
ibm.com/redbooks

IBM® Information Management Software

Oracle to DB2 Conversion Guide:
Compatibility Made Easy

Yvonne Chan
Nick Ivanov
Olaf Mueller

Move Oracle to DB2 efficiently
and effectively

Learn about DB2 10.5 Oracle
Database compatibility features

Use Oracle PL/SQL skills
directly with DB2 10.5

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Oracle to DB2 Conversion Guide: Compatibility
Made Easy

September 2013

International Technical Support Organization

SG24-7736-02

© Copyright International Business Machines Corporation 2009, 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Third Edition (September 2013)

This edition applies to IBM DB2 for Linux, UNIX, and Windows Version 10.5.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
Authors . xii

Acknowledgements . xiii
Now you can become a published author, too! . xiv
Comments welcome. xiv
Stay connected to IBM Redbooks publications . xv

Summary of changes . xvii
September 2013, Third Edition. xvii

Chapter 1. Introduction . 1
1.1 DB2 family of products . 2

1.1.1 DB2 editions . 2
1.1.2 IBM DB2 10.5 Advanced Enterprise Edition features 6
1.1.3 DB2 10 autonomic computing features . 7
1.1.4 Introduction to PureData . 9

1.2 DB2 Oracle database compatibility features overview 9
1.2.1 Concurrency control . 10
1.2.2 Data types . 11
1.2.3 Implicit casting. 11
1.2.4 SQL Standard . 12
1.2.5 PL/SQL . 12
1.2.6 Built-in packages. 15
1.2.7 Oracle specific JDBC extensions . 15
1.2.8 SQL*Plus scripts . 15
1.2.9 Oracle Call Interface and Pro*C . 16

1.3 DB2 educational resources . 16
1.3.1 IBM professional certification . 18
1.3.2 Other resources . 18
1.3.3 DB2 10 videos and topics . 19

Chapter 2. Language compatibility features. 21
2.1 DB2 compatibility features references. 22

2.1.1 SQL compatibility setup . 22
2.1.2 PL/SQL record and collection types . 27
2.1.3 Subtypes . 45
© Copyright IBM Corp. 2009, 2013. All rights reserved. iii

2.1.4 Basic procedural statements. 47
2.1.5 Control of flow statements. 53
2.1.6 Condition (exceptions) handling . 59
2.1.7 Cursor data type . 63
2.1.8 Static and dynamic SQL support. 69
2.1.9 Support for built-in scalar functions. 73
2.1.10 Routines, procedures, and functions compatibility 84
2.1.11 PL/SQL packages . 96
2.1.12 Triggers . 100
2.1.13 SQL statements . 103

2.2 Schema compatibility features . 113
2.2.1 Extended data type support . 113
2.2.2 Flexible schema changes in DB2 . 114
2.2.3 Sequences . 115
2.2.4 Index enablement . 117
2.2.5 Constraints enablement . 118
2.2.6 Created global temporary tables . 120
2.2.7 Synonyms . 121
2.2.8 Views and Materialized Views. 122
2.2.9 Object types . 123
2.2.10 Partitioning and MDC . 126
2.2.11 Oracle database links . 137
2.2.12 Oracle Data Dictionary compatible views 140

2.3 DB2 command-line utilities . 145
2.3.1 The command line processor plus user interface 145
2.3.2 Using the DB2 command line processor . 153

Chapter 3. Conversion process and enablement tools 159
3.1 The conversion process . 160
3.2 Enablement tools. 162

3.2.1 IBM Data Studio . 162
3.2.2 IBM Database Conversion Workbench . 165

3.3 Getting started with DCW . 169
3.3.1 Creating a DCW project . 169
3.3.2 DCW Task Launcher. 171

3.4 DDL extraction using DCW . 171
3.4.1 DDL extraction using a connection . 172
3.4.2 DDL extraction using a custom script . 177
3.4.3 Importing the DDL file . 178

3.5 Assessment and conversion using DCW . 178
3.5.1 Evaluating an Oracle DDL. 179
3.5.2 Converting Oracle DDL to DB2 compatible syntax 185
3.5.3 The Split DDL function . 189
iv Oracle to DB2 Conversion Guide: Compatibility Made Easy

3.6 Preparing your DB2 database for data movement 190
3.6.1 Creating the target DB2 database. 191
3.6.2 Deploying the DDL objects that are required for data movement . . 191

3.7 Data movement using DCW . 194
3.7.1 Data movement using flat files . 194
3.7.2 Data movement using pipes . 197
3.7.3 Data movement using IBM InfoSphere Federation Server 200
3.7.4 Data movement using IBM InfoSphere Change Data Capture 203
3.7.5 Manual data deployment. 209
3.7.6 Selecting the appropriate data movement method 210
3.7.7 Verifying data movement . 211

3.8 Deploying remaining objects on the target DB2 database 211
3.9 Conclusion. 212

Chapter 4. Enablement scenario . 213
4.1 Installing DB2 and creating an instance . 214
4.2 Enabling SQL compatibility . 217
4.3 Creating and configuring the target DB2 database 217
4.4 Defining a new database user. 220
4.5 Using IBM Database Conversion Workbench . 220

4.5.1 Getting started. 220
4.5.2 Extracting DDL and PL/SQL objects . 223
4.5.3 Compatibility evaluation . 225
4.5.4 Conversion . 228
4.5.5 Splitting DDL . 230
4.5.6 Deploying objects . 231
4.5.7 Extracting and loading data from files . 234
4.5.8 Deploying PL/SQL objects . 237
4.5.9 Resolving incompatibilities with Interactive Deploy. 238

4.6 Verifying enablement. 240
4.7 Summary . 241

Chapter 5. Application conversion . 243
5.1 DB2 application development introduction . 244

5.1.1 Driver support . 244
5.1.2 Embedded SQL. 246

5.2 Application enablement planning . 249
5.2.1 Checking software and hardware availability and compatibility . . . 249
5.2.2 Educating developers and administrators . 250
5.2.3 Analyzing application logic and source code 250
5.2.4 Setting up the target environment . 250
5.2.5 Changing vendor-specific database API use 250
5.2.6 Application testing . 251
 Contents v

5.2.7 Application tuning . 252
5.2.8 Production rollout procedures . 252
5.2.9 User education . 252

5.3 Converting XML features. 252
5.3.1 SQL/XML. 253
5.3.2 XQuery . 256
5.3.3 Modifying XML data . 259

5.4 Converting Oracle Pro*C applications to DB2. 261
5.4.1 Connecting to the database . 261
5.4.2 Host variable declaration. 262
5.4.3 Exception handling . 265
5.4.4 Error messages and warnings . 266
5.4.5 Passing data to a stored procedure from a C program 267
5.4.6 Building a C/C++ DB2 application. 269

5.5 Converting Oracle Java applications to DB2. 270
5.5.1 Java access methods to DB2 . 271
5.5.2 JDBC driver for DB2 . 271
5.5.3 JDBC driver declaration . 272
5.5.4 New binary XML API . 274
5.5.5 Stored procedure calls . 275

5.6 Converting Oracle Call Interface applications . 279
5.7 Converting Open Database Connectivity applications 282

5.7.1 Introduction to DB2 CLI. 282
5.7.2 Setting up the DB2 CLI environment. 283

5.8 Converting Perl applications . 284
5.8.1 DB2 Connect method syntax . 286
5.8.2 Syntax for calling a DB2 stored procedures 286

5.9 Converting PHP applications. 288
5.9.1 Connecting to Oracle using PDO . 289
5.9.2 Connecting to DB2 using PDO . 289
5.9.3 Connecting to an Oracle database using PHP (OCI8) 290
5.9.4 Connecting PHP applications to a DB2 database. 291

5.10 Converting .NET applications . 296
5.10.1 Supported development software for .NET Framework applications

(DB2 9.7) . 296
5.10.2 Supported development software for .NET Framework applications

(DB2 10.5) . 297
5.10.3 Supported deployment software for .NET Framework applications (in

general). 297
5.10.4 .NET Data Providers . 297
5.10.5 Visual Basic .NET conversion example . 298

Appendix A. Terminology mapping . 305
vi Oracle to DB2 Conversion Guide: Compatibility Made Easy

Appendix B. Data types . 309
B.1 Supported SQL data types in C/C++ . 310
B.2 Supported SQL data types in Java . 314
B.3 Data types available in PL/SQL . 316
B.4 Mapping Oracle data types to DB2 data types . 319

Appendix C. Built-in modules . 321
C.1 DBMS_ALERT . 322
C.2 DBMS_DDL . 323
C.3 DBMS_JOB . 324
C.4 DBMS_LOB . 326
C.5 DBMS_OUTPUT. 328
C.6 DBMS_PIPE . 329
C.7 DBMS_SQL . 331
C.8 DBMS_UTILITY . 335
C.9 UTL_DIR. 338
C.10 UTL_MAIL. 339
C.11 UTL_SMTP . 341

Appendix D. DB2CI sample program . 345

Appendix E. Code samples . 351
E.1 Code disclaimer . 352
E.2 Oracle DDL statements. 352

E.2.1 Tables and views . 352
E.2.2 Packages, procedures, and functions. 357
E.2.3 Triggers and anonymous blocks. 370

E.3 DB2 DDL statements . 373
E.3.1 Tables and views . 373
E.3.2 PL/SQL packages, procedures, and functions 378
E.3.3 Triggers. 394

E.4 Deep nested objects sample. 395
E.4.1 Creating a database . 396
E.4.2 Creating schema objects (default schema) 396
E.4.3 JUnit tests (class file excerpt that includes only relevant information for

the printed book) . 413
E.4.4 Cleaning up. 424

Appendix F. Additional material . 425
Code disclaimer . 425
Locating the web material . 426
Using the web material . 426

System requirements for downloading the web material 426
Downloading and extracting the web material . 427
 Contents vii

Related publications . 429
IBM Redbooks publications . 429
Other publications . 429
Online resources . 431
Help from IBM . 432
viii Oracle to DB2 Conversion Guide: Compatibility Made Easy

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2009, 2013. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AS/400®
DB2®
DB2 Connect™
developerWorks®
DRDA®
Express®
IBM®

IBM PureData™
Informix®
InfoSphere®
Optim™
OS/390®
Passport Advantage®
PureData™
pureScale®

pureXML®
Redbooks®
Redbooks (logo) ®
System z®
Tivoli®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Intel, Itanium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication describes IBM DB2® SQL compatibility
features. The latest version of DB2 includes extensive native support for the
PL/SQL procedural language, new data types, scalar functions, improved
concurrency, built-in packages, OCI, SQL*Plus, and more. These features can
help with developing applications that run on both DB2 and Oracle and can help
simplify the process of moving from Oracle to DB2.

In addition, IBM now provides tools to simplify the enablement process, such as
the highly scalable IBM Data Movement Tool for moving schema and data into
DB2, and an Editor and Profiler for PL/SQL provided by the IBM Data Studio
tool suite.

This Oracle to DB2 migration guide describes new technology, preferred
practices for moving to DB2, and common scenarios that can help you as you
move from Oracle to DB2. This book is intended for IT architects and developers
who are converting from Oracle to DB2.

DB2 compatibility with Oracle is provided through native support. The new
capabilities in DB2 that provide compatibility are implemented at the lowest and
most intimate levels of the database kernel, as though they were originally
engineered for DB2. Native support means that the DB2 implementation is done
without the aid of an emulation layer. This intimacy leads to the scalable
implementation that DB2 offers, providing identical performance between DB2
compatibility features and DB2 other language elements. For example, DB2 runs
SQL PL at the same performance as PL/SQL implementations of the
same function.
© Copyright IBM Corp. 2009, 2013. All rights reserved. xi

Authors

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

 Yvonne Chan is the DB2 IBM pureScale® Principal on the
IBM PureData™ Ecosystem team helping customers
implement DB2 pureScale and IBM PureData System for
Transactions solutions. Before her current role, she spent
several years on the DB2 pureScale kernel team, and led
the DB2 Linux Team that is responsible for porting DB2 to
several Linux platforms, including x86_64, IBM System z®,
and Itanium Yvonne has been with IBM for over 14 years
and earned a Bachelor of Applied Science degree from the
University of Toronto in Computer Engineering

Nick Ivanov is a DB2 Solutions Migration Consultant at
the IBM Toronto Software Laboratory. Before joining IBM
Canada Labs in 2010, Nick Ivanov worked for many years
as an independent DBA consultant for companies in
financial and retail industries and the public sector. Nick
has experience working with DB2, Oracle, MS SQL Server,
and other database systems.

Olaf Mueller is the WW Principal of DB2 Conversion in the
IBM Information Management Technical Enablement
organization. He is based at the Toronto Lab in Canada.
With his more than 20 years of experience, he helps major
IBM customers convert their existing Oracle -based
applications to DB2. Olaf is also the chief architect of the
IBM Database Conversion Workbench. This workbench
helps automate the whole database conversion process.
Olaf is an experienced IBM Redbooks publications author.
He holds a degree in Chemistry from
Johannes-Gutenberg-Universitaet at Mainz, Germany.
xii Oracle to DB2 Conversion Guide: Compatibility Made Easy

Acknowledgements

The authors would like to express their great appreciation to the following
contributing authors:

Sabyasachi Routray is a senior software developer at IBM India
Software Labs. After starting his career with IBM in 2005,
Sabyasachi has been involved in software testing and
development across different projects. Sabyasachi has
experience in Core Java, Realtime Java, Perl, XML, and DB2.

Guilherme Gevaerd is a Software Engineer with the IBM
Information Management PureData Ecosystem organization. He
is based at the São Paulo Laboratory in Brazil. He has over five
years of experience working on software development. He is a
developer of IBM Database Conversion Workbench. This
workbench helps automate the whole database conversion
process. He holds a degree in Computer Science from
Univerdade do Estado de Santa Catarina at Joinville, Brazil.

Tapas Gupta is a software developer in the IBM India Software
Labs. He has more than six years of experience in software
development. Tapas has worked on various telecom and banking
domain projects. Tapas has experience in Java, C++, Perl,
Oracle, and DB2.

The authors also thank the following people for their contributions to this project:

Joshua Kim
Project Manager, IBM Information Management

Esteban Laver
Software Engineer, IBM Information Management

Robert Matchett
Senior Software Engineer, IBM Information Management

Jana Palmer
Application Architect, IBM Information Management

Fraser McArthur
Technical Enablement Specialist, IBM Information Management
 Preface xiii

Whei-Jen Chen
Project Leader, IBM International Technical Support Organization

Thanks to the authors of the previous editions of this book.

� The authors of the second edition, Oracle to DB2 Conversion Guide:
Compatibility Made Easy, published in September 2012, were:

Nick Ivanov
Romeo Lupascu
Olaf Mueller

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com
xiv Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks publications

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xv

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://twitter.com/ibmredbooks
http://www.facebook.com/IBMRedbooks
http://www.linkedin.com/groups?home=&gid=2130806
http://www.redbooks.ibm.com/rss.html

xvi Oracle to DB2 Conversion Guide: Compatibility Made Easy

Summary of changes

This section describes the technical changes that were made in this edition of the
book and in previous editions. This edition might also include minor corrections
and editorial changes that are not identified.

Summary of Changes
for SG24-7736-02
for Oracle to DB2 Conversion Guide: Compatibility Made Easy
as created or updated on July 2, 2014.

September 2013, Third Edition

This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� New product packaging for DB2 10.5 (Chapter 1)
� New compatibility features (Chapters 1 and 2)
� IBM Database Conversion Workbench (Chapter 3)

Changed information
� Improvements to compatibility features (Chapter 2)
� Description of the latest version of enablement tools (Chapter 3)
� Enablement scenario modified to use updated enablement tools (Chapter 4)
© Copyright IBM Corp. 2009, 2013. All rights reserved. xvii

xviii Oracle to DB2 Conversion Guide: Compatibility Made Easy

Chapter 1. Introduction

IBM DB2 10.5 for Linux, UNIX, and Windows operating systems offers extensive
native support for Oracle compatibility, including native support for Oracle SQL
and PL/SQL dialects. This support allows many applications that are written
against Oracle to run against DB2 with minimal or no changes, allowing you to
easily migrate your applications to DB2.

In this book, we explore the preferences and practices for migrating your
application from Oracle to DB2.

This chapter includes the following topics:

� DB2 family of products (including an introduction to PureData)
� DB2 Oracle database compatibility features overview
� DB2 educational resources

1

Terminology note: In this book, references to DB2 UDB or DB2 are used
generically to mean IBM DB2 10.5 for Linux, UNIX, and Windows.
© Copyright IBM Corp. 2009, 2013. All rights reserved. 1

1.1 DB2 family of products

In the era of Information On Demand, IBM Information Management software
offers a wide range of DB2 database products to accommodate different
business needs and technical requirements to provide customers with a robust
and scalable enterprise-wide solution.

1.1.1 DB2 editions

IBM offers database solutions that run on all platforms, including Microsoft
Windows, IBM AIX®, Solaris, HP-UX, Linux, IBM AS/400®, IBM OS/390®, and
IBM z/OS® operating systems. In addition, DB2 technologies support both 32-bit
and 64-bit environments, providing support for 32-bit operating systems on Linux
on x86 and Windows systems, and 64-bit operating systems on Linux, UNIX, and
Windows systems.

The DB2 product family is composed of various editions and features that
provide customers with choices based on business need. With DB2 10.5, to
simplify the decision about which edition to buy, the number of available choices
has been reduced to seven editions and one feature.

Express-C
IBM DB2 Express®-C is available as a no cost, entry-level edition of the DB2
data server for developers and the IBM Business Partner community. It can be up
and running in minutes and includes self-management features. It includes the
following capabilities of DB2 for Linux, UNIX, and Windows
operating systems:

� IBM pureXML® storage
� Oracle Compatibility
� Replication tools
� Time Travel Query
� IBM Data Studio
� Federation with DB2 and IBM Informix Data Server

Solutions that are developed using DB2 Express-C can be seamlessly deployed
using scalable DB2 editions without modifications to the application code.

DB2 Express-C can be used for development and deployment at no charge and
can also be distributed with third-party solutions without any royalties to IBM. It
can be installed on physical or virtual systems with any number of processors
and memory and is optimized to use up to a maximum of two processor cores
and 16 GB of memory.
2 Oracle to DB2 Conversion Guide: Compatibility Made Easy

DB2 Express-C is refreshed at major release milestones and comes with online
community-based assistance. Users requiring more formal support, access to fix
packs, or additional capabilities, such as high availability clustering and
replication features, can purchase an optional yearly subscription for DB2
Express (FTL) or upgrade to other DB2 editions.

Express Edition
DB2 Express is a full-function DB2 data server, which provides attractive
entry-level pricing for the small and medium business (SMB) market. It is offered
in per Authorized User, Processor Value Unit, or Limited Use Virtual Server
based pricing models to provide choices to match SMB customer needs. It
comes with simplified packaging and is easy to transparently install within
an application.

DB2 Express can also be licensed on a yearly fixed term Limited Use Virtual
Server license. Although it is easy to upgrade to the other editions of DB2 10.5,
DB2 Express includes the same autonomic manageability features of the more
scalable editions. You never have to change your application code to upgrade;
simply install the license certificate to upgrade. DB2 Express adds the following
additional features to the Express-C edition:

� pureXML

� Web services federation

� DB2 Homogeneous Federation

� High Availability and Disaster Recovery (HADR)

� Homogeneous SQL replication between DB2 for Linux, UNIX, and Windows,
and Informix

� IBM Tivoli® System Automation

DB2 Express can be deployed on pervasive SMB operating systems, such as
Linux, Windows, or Solaris systems. If licensed as a yearly subscription (DB2
Express FTL), it also includes a high availability feature if both primary and
secondary servers in the high availability cluster are licensed. If licensed under
the Limited Use Virtual Server metric, DB2 Express uses up to eight cores on the
server. The DB2 data server cannot use more than 64 GB of memory per server.
You must acquire a separate user license for each authorized user of this product
with a minimum purchase of five users per server.
 Chapter 1. Introduction 3

Workgroup Server Edition
DB2 Workgroup is the data server of choice for deployment in a departmental,
workgroup, or medium-sized business environment. It is offered in per Authorized
User, Processor Value Unit, or limited use socket pricing models to provide an
attractive price point for medium-size installations while providing a full-function
data server. Included with this edition is the IBM Data Studio tool, which can be
installed separately.

DB2 Workgroup can be deployed in Linux, UNIX, and Windows server
environments and uses up to 16 cores and 128 GB of memory. DB2 Workgroup
is restricted to a stand-alone physical server with a specified maximum number
of Processor Value Units based on the total number and type of processor cores,
as determined in accordance with the IBM Express Middleware Licensing Guide,
available at:

ftp://ftp.software.ibm.com/software/smb/pdfs/LicensingGuide.pdf

If licensed using per Limited Use Socket licensing, you can deploy on servers
with a maximum of four sockets. You must acquire a separate user license for
each authorized user of this product, with a minimum purchase of five users
per server.

Enterprise Server Edition
DB2 Enterprise Server Edition is designed to meet the data server needs of
mid-size to large-size businesses. It can be deployed on Linux, UNIX, or
Windows servers of any size, from one processor to hundreds of processors, and
from physical to virtual servers.

DB2 Enterprise Server Edition is an ideal foundation for building on demand
enterprise-wide solutions, such as high-performing 24x7 available high-volume
transaction processing business solutions or web-based solutions. It is the data
server back-end system of choice for the following types of industry-leading ISVs
building enterprise solutions:

� Business intelligence
� Content management
� E-commerce
� Enterprise Resource Planning
� Customer Relationship Management
� Supply Chain Management
4 Oracle to DB2 Conversion Guide: Compatibility Made Easy

ftp://ftp.software.ibm.com/software/smb/pdfs/LicensingGuide.pdf

Additionally, DB2 Enterprise Server Edition offers connectivity, compatibility, and
integration with other enterprise DB2 and IBM Informix® data sources. DB2
Enterprise Server Edition includes the following additional features:

� Materialized Query Table (MQT)
� Multi-Dimensional Clustering (MDC)
� Multi-Temperature Storage
� Query Parallelism

DB2 Enterprise Server Edition is available on either a Processor Value Unit or
per Authorized User pricing model. You must acquire a separate user license for
each Authorized User of this product with a minimum purchase of 25 users per
100 Processor Value Units.

Advanced Enterprise Server Edition
DB2 Advanced Enterprise Server Edition is the flagship of DB2 editions. It is
designed to meet the data server needs of large-size businesses. It can be
deployed on Linux, UNIX, or Windows servers of any size, from one processor to
hundreds of processors, and from physical to virtual servers.

DB2 Advanced Enterprise Server Edition is an ideal foundation for building on
demand enterprise-wide solutions, such as high-performing 24x7 available
high-volume transaction processing business solutions or web-based solutions.
Additionally, DB2 Advanced Enterprise Server Edition offers connectivity,
compatibility, and integration with other enterprise DB2 and Informix data
sources. It provides the following additional features.

� DB2 Storage Optimization Feature
� Continuous Data Ingest
� Federation with DB2 for Linux, UNIX, and Windows, and Oracle
� IBM InfoSphere® Optim™ Configuration Manager
� IBM InfoSphere Optim Performance Manager Extended
� IBM InfoSphere Optim Query Workload Tuner
� IBM InfoSphere Data Architect
� Q Replication with two other DB2 for Linux, UNIX, and Windows servers
� Workload management

DB2 Advanced Enterprise Server Edition is available on either a Processor Value
Unit or per Authorized User pricing model. You must acquire a separate user
license for each Authorized User of this product with a minimum purchase of 25
users per 100 Processor Value Units.
 Chapter 1. Introduction 5

Advanced Workgroup Server Edition
This edition is similar to the DB2 Advanced Enterprise Server Edition except that
it has limits on processor, memory, and database size and is suitable for
deployment in a departmental, workgroup, or medium-sized
business environment.

DB2 Advanced Workgroup Server Edition is available on either a Processor
Value Unit or per Authorized User Single Install pricing model. You must acquire
a separate user license for each Authorized User of this product with a minimum
purchase of 25 users per 100 Processor Value Units. DB2 Advanced Workgroup
Server Edition can be deployed in Linux, UNIX, and Windows server
environments with up to 16 cores and 128 GB of memory.

For more information about DB2 database product editions, go to the
following website:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp

Developer Edition
This edition offers a package for a single application developer to design, build,
and prototype applications for deployment on any of the IBM Information
Management client or server platforms. This comprehensive developer offering
includes all the DB2 server editions and DB2 Connect Enterprise Edition so you
can build solutions that use the latest data server technologies.

The software in this edition cannot be used for production systems. You must
acquire a separate user license for each authorized user of this product.

1.1.2 IBM DB2 10.5 Advanced Enterprise Edition features

Although DB2 10 includes capabilities that can serve the needs of most typical
deployments, additional capabilities are required for certain application types,
workloads, or environments that are not required by every deployment. Rather
than build a one-size-fits-all offering, IBM makes these capabilities as different
product editions to provide the flexibility to purchase only what you need.

The following features are included with the DB2 10.5 Advanced Workgroup
Edition, DB2 10.5 Advanced Enterprise Edition, and DB2 10.5 Developer Edition.
6 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp

IBM DB2 column organized tables
DB2 10.5 introduces a new processing paradigm and data format that can
accelerate analytic processing. Compressed column-organized tables for DB2
databases provide broad support of data mart workloads that involve complex
queries that are characterized by multi-table joins, grouping, and aggregation
and table scans over a star schema.

The IBM DB2 pureScale feature
You can reduce the risk and cost that is associated with growing your distributed
database solution by providing extreme capacity and application transparency.
Designed for continuous availability and high availability capable of exceeding
even the strictest industry standard, the IBM DB2 pureScale feature tolerates
both planned maintenance and component failure with ease.

The DB2 pureScale feature was first introduced in DB2 9.8. DB2 10.5 builds on
DB2 pureScale feature support by adding the highly available and disaster
recovery feature (HADR), increasing the availability characteristics, and
improving workload balancing. In addition, restore mobility is provided between
the DB2 pureScale feature and the DB2 Enterprise Server Edition.

The IBM DB2 Advanced Recovery Feature
This is the only feature that can be additionally purchased with any DB2 10.5
edition except for the Express-C edition. This feature provides advanced
database backup, recovery, and data extraction capabilities through the following
DB2 tools:

� IBM DB2 Merge Backup for Linux, UNIX, and Windows

� IBM DB2 Recovery Expert for Linux, UNIX, and Windows

� IBM DB2 Optim High Performance Unload for DB2 for Linux, UNIX, and
Windows

1.1.3 DB2 10 autonomic computing features

The DB2 autonomic computing environment is self-configuring, self-healing,
self-optimizing, and self-protecting. By sensing and responding to situations that
occur, autonomic computing shifts the burden of managing a computing
environment from database administrators to technology.
 Chapter 1. Introduction 7

DB2 autonomic computing includes the following features:

� Automatic features

Automatic features assist you in managing a database system. They allow
your system to perform self-diagnosis and to anticipate problems before they
happen by analyzing real-time data against historical problem data. You can
configure some of the automatic tools to change your system without
intervention to avoid service disruptions.

� Self tuning memory

The DB2 memory-tuning feature simplifies the task of memory configuration
by automatically setting values for several memory configuration parameters.
When enabled, the memory tuner dynamically distributes available memory
resources among the following memory consumers:

– Buffer pools
– Locking memory
– Package cache
– Sort memory

� Configuring memory and memory heaps

With the simplified memory configuration feature, you can configure memory
and memory heaps required by the DB2 data server by using the default
AUTOMATIC setting for most memory-related configuration parameters, thus
requiring much less tuning.

� Automatic storage

Automatic storage simplifies storage management for table spaces. When
you create an automatic storage database, you specify the storage paths
where the database manager places your data. Then, the database manager
manages the container and space allocation for the table spaces as you
create and populate them.

� Automatic compression dictionary creation

A compression dictionary is used to compress data that is moved into a table
to free up space so that more data can be added in the table. A compression
dictionary is automatically created and inserted or appended to a table during
a data population operation, such as a load or an insert.

� Automatic maintenance

The database manager provides automatic maintenance capabilities for
performing database backups, keeping statistics current, and reorganizing
tables and indexes as necessary. Performing maintenance activities on your
databases is essential to ensure that they are optimized for performance
and recoverability.
8 Oracle to DB2 Conversion Guide: Compatibility Made Easy

� Configuration Advisor

You can use the Configuration Advisor to obtain recommendations for the
initial values of the buffer pool size, database configuration parameters, and
database manager configuration parameters.

� Design Advisor

The DB2 Design Advisor is a tool that can help you improve your workload
performance. The DB2 Design Advisor provides recommendations about
selecting indexes and other physical database structures, such as
materialized query tables (MQTs), multidimensional clustering tables (MDC),
and database partitioning features (used with DPF). The Design Advisor
identifies all of the objects that you must improve the performance of
your workload.

� Utility throttling

Utility throttling regulates the performance impact of maintenance utilities so
that they can run concurrently during production periods. Although the impact
policy (a setting that allows utilities to run in throttled mode) is defined by
default, you must set the impact priority (a setting that each cleaner has,
indicating its throttling priority) when you run a utility (if you want to throttle it).

1.1.4 Introduction to PureData

IBM PureData Systems are optimized to deliver data to today’s demanding
applications. With built-in expertise, integration by design, and simplified
experience in mind, these systems provide a well-tuned, working database
environment for workloads that expect little to no downtime in a
24x7 environment.

One of these systems is the PureData System for Transactions, which includes a
DB2 pureScale cluster allowing for a continuously available DB2 database
environment. This platform helps reduce complexity, accelerates the time to
value, and helps lower ongoing data management costs for any OLTP workload.

For more information, go to the following website:

http://www-01.ibm.com/software/data/puredata/transactions/
 Chapter 1. Introduction 9

http://www-01.ibm.com/software/data/puredata/transactions/

1.2 DB2 Oracle database compatibility features
overview

To allow an application that is written for one relational database management
system (RDBMS) to run on another RDBMS unchanged, many pieces must fall
into place. Different locking mechanisms, data types, SQL, procedural language
on the server, and even the client interfaces that are used by the application itself
must be aligned in syntax and in semantics.

Starting with Version 9.7, DB2 understands and runs applications that are written
for Oracle. In DB2 10.5, additional Oracle compatibility features are introduced.

1.2.1 Concurrency control

Traditionally, cursor stability (CS) is implemented so that writers block readers
and, in some cases, readers can block writers. The reason for this control is that,
traditionally, a transaction under CS isolation “waits for the outcome” of a pending
concurrent transaction’s changes.

There is no semantic reason why a transaction that runs under CS isolation
should wait for an outcome when it encounters a changed row. An equally
satisfactory behavior is to read the currently committed version of the
changed row.

This behavior is implemented in DB2 so that DB2 retrieves the currently
committed version of a locked row from the log. In most common cases, the row
is still in the log buffer because the change is not committed yet. If the row is
written out and is also overwritten in the log buffer, DB2 knows exactly where to
find it so that a single I/O retrieves the wanted version.

Figure 1-1 on page 11 shows an application that updates a name in an employee
table. Before that application commits the change, another application scans that
table. Traditionally, the second user waits for the first application to commit or roll
back. Because it is reading currently committed data, the scan for the second
application retrieves the version of the row from the log buffer that does not
contain the first user’s changes.
10 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Figure 1-1 Concurrency control

This new behavior and its implementation introduce no new objects, such as a
rollback segment, and has no performance impact on the writer, because the log
must be written.

This new behavior cannot cause a situation similar to “Snapshot too old” because
in the unlikely event that the necessary log file is archived, DB2 falls back and
waits for the lock to go away. It is a rare occurrence for this situation to occur, as it
requires archival of a log file while a transaction is still uncommitted.

In addition to these changes, additional lock avoidance techniques were
introduced in to DB2 to eliminate a reader holding a lock under CS isolation.

1.2.2 Data types

The heart of every database is its data. Mismatched types or mismatched
semantics of these types can seriously impact your ability to enable an
application to another RDBMS. To allow Oracle applications to run on DB2, you
must support its nonstandard basic types, such as strings, dates, and numerics.
Beyond aligning these basic types, there are other, more complex types that are
commonly used in Oracle PL/SQL that are added in DB2. (For more information,
see B.3, “Data types available in PL/SQL”.)

1.2.3 Implicit casting

Implicit casting is the automatic conversion of data of one data type to another
data type based on an implied set of conversion rules. If two objects have
mismatched types, implicit casting is used to perform comparisons or
assignments if a reasonable interpretation of the data types can be made.

Name Country
X Russo Italy

Bernard France

Garcia Spain

Pappas Greece

Levi Israel

Peters Belgium

RID 1 = Rossi->Russo

Log Files

Log Buffer

Scanner Memory LookupUser 1:
update T1 set name = 'Russo'
where country= 'Italy'

User 2:
select * from T1

Lods

Table T1
 Chapter 1. Introduction 11

In adherence with the SQL Standard and following a philosophy that a type
mismatch is likely an indication of a coding mistake, DB2 has traditionally
followed strong typing rules, where strings and numerics cannot be compared
unless one is explicitly cast to the other.

Often, Oracle applications use weak typing in their SQL. These applications
previously failed to compile against DB2. In DB2, implicit casting (or weak typing)
is added, that is, strings and numbers can be compared, assigned, and operated
on in a flexible fashion.

In addition, untyped NULLs can be used in many more places, and untyped
parameter markers can be used nearly anywhere, thanks to deferred prepare,
where DB2 does not resolve the type of a parameter marker until it sees the first
actual value.

DB2 also supports defaulting procedure parameters and the association of
arguments to parameters by name.

Implicit casting is also supported during function resolution. When the data types
of the arguments of a function being started cannot be promoted to the data
types of the parameters of the selected function, the data types of the arguments
are implicitly cast to the data types of the parameters.

1.2.4 SQL Standard

DB2 has a tradition of supporting the SQL Standard; in contrast, Oracle
implements many nonstandard keywords and semantics. DB2 supports many of
these keywords and semantics, for example:

� CONNECT BY recursion

� (+) join symbol

� DUAL table

� ROWNUM pseudo column

� ROWID pseudo column

� MINUS SQL operator

� SELECT INTO FOR UPDATE

� PUBLIC SYNONYM

� CREATE TEMPORARY TABLE

� TRUNCATE TABLE
12 Oracle to DB2 Conversion Guide: Compatibility Made Easy

1.2.5 PL/SQL

DB2 introduced native PL/SQL support. Figure 1-2 on page 13 shows that the
DB2 engine now includes a PL/SQL compiler with the SQL PL compiler. Both
compilers produce virtual machine code for DB2 SQL Unified Runtime Engine. It
is important to note that monitoring and development tools such as Optim
Database Tools are hooked into DB2 at the runtime engine level. DBAs and
application programmers develop and debug their PL/SQL source.

Figure 1-2 SQL compiler

The integration of PL/SQL into DB2 as a first class procedural language has
several implications:

� There is no translation. The source code remains as it is in the schema
catalog.

� Developers can continue working in the language with which they are familiar.
There is no need to translate logic to DB2 dialect even if new logic is written in
SQL PL. Routines using different dialects can call each other.

� Packaged application vendors can use one source code against both Oracle
and DB2.

� Both PL/SQL and SQL PL produce the same virtual machine code for the
DB2 SQL Unified Runtime Engine. Therefore, by design, both PL/SQL and
SQL PL perform at the same speed.

� Because the debugger infrastructure hooks directly into the SQL Unified
Runtime Engine, PL/SQL is naturally supported by IBM Data Studio.

Editor Optim
Development

Studio

Debugger

ProfilerSQL Unified Runtime Engine

Database

DB2 server

PL/SQL
compiler

PL/SQL
compiler
 Chapter 1. Introduction 13

PL/SQL syntax details
DB2 supports the following common constructs of PL/SQL:

� If Then Else

� While loops

� := assignments

� Local variables and constants

� #PRAGMA EXCEPTION and exception handling

� Various forms of for loops (range, cursor, and query)

� %TYPE and %ROWTYPE anchoring of variables and parameters to
other objects

� #PRAGMA AUTONOMOUS transactions, which allow procedures to run in a
private transaction

PL/SQL object support
PL/SQL can be used in various different objects that allow procedural logic:

� Scalar functions
� Before each row triggers
� After each row triggers
� Procedures
� Anonymous blocks
� PL/SQL packages

PL/SQL package support
Most PL/SQL in Oracle applications is contained within packages. A PL/SQL
package (not to be confused with a DB2 package) is a collection of individual
objects with the ability to differentiate between externally accessible objects and
those objects that are mere helpers for use within the package.

The ANSI SQL equivalent of a package is a MODULE. DB2 now provides
support for ANSI SQL modules and PL/SQL packages. In particular, the following
capabilities are provided:

� CREATE [OR REPLACE] PACKAGE, which defines prototypes for externally
visible routines. It also defines all externally visible and non-procedural
objects, such as variables and types.

� CREATE [OR REPLACE] PACKAGE BODY, which implements all private and
public routines and all other private objects.
14 Oracle to DB2 Conversion Guide: Compatibility Made Easy

� Within a package or package body, the following objects can be defined:

– Variables and constants
– Data types
– Exceptions
– Scalar functions
– Procedures
– Cursors

� Package initialization.

� Public synonyms on packages.

1.2.6 Built-in packages

Some Oracle applications use packages that are provided by the RDBMS. In
particular, libraries that provide reporting, email, or cross-connection
communication can be popular. The following packages, available in DB2,
facilitate enablement of these applications for DB2:

� DBMS_OUTPUT
� DBMS_SQL
� DBMS_ALERT
� DBMS_PIPE
� DBMS_JOB
� DBMS_LOB
� DBMS_UTILITY
� DBMS_DDL
� UTL_FILE
� UTL_MAIL
� UTL_SMTP
� UTL_DIR

1.2.7 Oracle specific JDBC extensions

JDBC is a standard Java client interface. However, extensions were added to the
Oracle JDBC driver to support specific nonstandard data types. To maximize the
level of compatibility for Java technology-based applications, the DB2 10.5 JDBC
driver provides, among other things, support for calling procedures with
reference cursor and VARRAY parameters.
 Chapter 1. Introduction 15

1.2.8 SQL*Plus scripts

Often times, DDL scripts and reports are written using the SQL*Plus command
line processor. To make it easier to transfer these scripts and the skills of
developers that write them, DB2 provides an SQL*Plus compatible command line
processor, called CLPPlus. The tool has the following functionality:

� SQL*Plus-compatible command options
� Variable substitution
� Column formatting
� Reporting functions
� Control variables

1.2.9 Oracle Call Interface and Pro*C

Oracle Call Interface (OCI) and Pro*C are Oracle client APIs that allow access to
an Oracle database from C and C++ programs.

DB2CI is a callable SQL interface to the DB2 database servers. It is a C and C++
API for DB2 database access that uses function calls to connect to databases,
manage cursors, and perform SQL statements.

The DB2CI interface provides support for over 120 OCI APIs. This support
reduces the complexity of enabling existing OCI applications so that they work
with DB2 databases. The IBM Data Server Driver for DB2CI is the driver for the
DB2CI interface.

DB2 Embedded SQL is the equivalent to Oracle Pro*C. It is extended to
understand the Oracle Pro*C dialect as well.

1.3 DB2 educational resources

IBM has offerings to support training needs, enhance skills, and boost success
with IBM software. IBM offers a range of training options from traditional
classroom to instructor-led online (ILO) training to meet your demanding
schedule. ILO training is an innovative learning format where students get the
benefit of being in a classroom with the convenience and cost savings of
online training.

Go Green with IBM onsite training for groups as small as three or as large as 14.
Choose from the same quality training that is delivered in classrooms, or
customize a course or a selection of courses to best suit your business needs.
16 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Enjoy further savings when you purchase training at a discount with an IBM
Education Pack online account, which is a flexible and convenient way to pay,
track, and manage your education expenses online. Check your local Information
Management Training and Education website or with your training representative
for the most recent training schedule.

Table 1-1 lists the DB2 educational offerings that are available.

Table 1-1 DB2 educational offerings

Descriptions of courses for IT professionals and managers are available at:

http://www.ibm.com/services/learning/ites.wss/tp/en?pageType=tp_search

For scheduling and enrollment, call IBM training at 800-IBM-TEACH (426-8322)
or go to:

http://www.ibm.com/training

Course title Classroom
Code

DB2 Family Fundamentals CE031

SQL Workshop CE121

SQL Workshop for Experienced Users 1E131

Fast Path to DB2 10.1 for Experienced Relational DBAs CL284

DB2 10.1 for Linux, UNIX, and Windows Quickstart for Exp.
Relational DBAs

CL484

DB2 10.1 for Linux, UNIX, and Windows New Feat. and DB Migr.
Considerations

CL313

DB2 10 for Linux, UNIX, and Windows: Basic Administration for
Linux and Windows

CL2X3

DB2 9 pureScale Implementation and Ctrl for DB2 for Linux, UNIX,
and Windows Admins

CL800

Query XML Data with DB2 9 CL121

Manage XML Data with DB2 9 CL141

Query and Manage XML Data with DB2 9 CL131

DB2 Performance Tuning and Monitoring CL413

DB2 Advanced Database Recovery CF492

Oracle to DB2 Enablement Workshop CL720
 Chapter 1. Introduction 17

http://www.ibm.com/services/learning/ites.wss/tp/en?pageType=tp_search
http://www.ibm.com/training

1.3.1 IBM professional certification

Information Management Professional Certification is a business solution for
skilled IT professionals to demonstrate their expertise to the world. Certification
validates skills and demonstrates proficiency with the most recent IBM
technology and solutions. IBM professional certification includes the following
offerings:

� Exam 610, DB2 10.1 Fundamentals: IBM Certified Database Associate - DB2
10.1 Fundamentals

� Exam 611, DB2 10.1 DBA for Linux, UNIX, and Windows: IBM Certified
Database Administrator - DB2 10.1 DBA for Linux, UNIX, and Windows

� Exam 543, DB2 9.7 Application Developer: IBM Certified Application
Developer - DB2 9.7

� Exam 545, DB2 9.7 SQL Procedure Developer: IBM Certified Solution
Developer - DB2 9.7 SQL Procedure

For additional information, go to:

http://www.ibm.com/software/data/education/certification.html

1.3.2 Other resources

Here are some additional DB2 educational resources:

� IBM DB2 manuals:

http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27009474

� IBM Redbooks publications:

http://www.redbooks.ibm.com

� IBM Press books on DB2 and other products:

http://www.redbooks.ibm.com/ibmpress/

� IBM DB2 Express-C Edition is a version of DB2 that is available at no cost
and can be downloaded from the following address:

http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX
01&S_CMP=HP

� IBM developerWorks®:

http://www.ibm.com/developerworks
18 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.ibm.com/software/data/education/certification.html
http://www.ibm.com/developerworks
http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www.ibm.com/developerworks/downloads/im/udbexp/?S_TACT=105AGX01&S_CMP=HP
http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://www.redbooks.ibm.com/ibmpress/
http://www.redbooks.ibm.com

1.3.3 DB2 10 videos and topics

The following videos and topics provide introductions to some of the features
available in DB2 10.

Videos
The following videos are available from YouTube:

� Native PL/SQL support:

http://www.youtube.com/watch?v=EnpDMvobUmE

� Moving to DB2 is easy:

http://www.youtube.com/watch?v=HJx3KZ5byN0

� CLPPlus:

http://www.youtube.com/watch?v=3PndCKWlpJk

� Online Schema change:

http://www.youtube.com/watch?v=wvM0xl9OXyE

� DB2 10.1 - Time Travel Query:

http://www.youtube.com/watch?v=7JrQdzdYwOA

Topics
Run Oracle applications on DB2 10.1 for Linux, UNIX, and Windows is available
from IBM developerWorks at:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0907oracl
eappsondb2/index.html
 Chapter 1. Introduction 19

http://www.youtube.com/watch?v=7JrQdzdYwOA
http://www.youtube.com/watch?v=EnpDMvobUmE
http://www.youtube.com/watch?v=HJx3KZ5byN0
http://www.youtube.com/watch?v=3PndCKWlpJk
http://www.youtube.com/watch?v=wvM0xl9OXyE
http://www.ibm.com/developerworks/data/library/techarticle/dm-0907oracleappsondb2/index.html

20 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Chapter 2. Language compatibility
features

IBM DB2 10.5 for Linux, UNIX, and Windows operating systems includes
Structured Query Language (SQL) and Procedural Language SQL (PL/SQL)
capabilities that facilitate database enablement from Oracle. These features
provide native support for the data types, scalar functions, packages and
language elements, built-in packages, and the PL/SQL procedural language.
Native support means that these interfaces are supported in the engine of the
DB2 database server at the same level of integrity and efficiency as any other
DB2 native language element. As a result, when you use these features, they
perform with the same speed and efficiency that the DB2 product offers.

This chapter introduces the language features that DB2 supports and provides
examples of their use. It includes the following sections:

� DB2 compatibility features references
� Schema compatibility features
� DB2 command-line utilities

2

© Copyright IBM Corp. 2009, 2013. All rights reserved. 21

2.1 DB2 compatibility features references

The DB2 SQL compatibility features eliminate the need to convert most Oracle
database objects and Oracle SQL to DB2 syntax. This section provides
examples of typical Oracle syntax constructs that are supported in DB2. It also
describes how to perform manual conversions for Oracle objects and features
that are not natively supported on DB2.

2.1.1 SQL compatibility setup

DB2 compatibility features ease the task of moving applications that are written
for Oracle, Sybase, and MySQL to DB2. You can use the
DB2_COMPATIBILITY_VECTOR registry variable to enable one or more DB2
compatibility features. This DB2 registry variable is represented as a
hexadecimal value, where each bit in the variable corresponds to one of the DB2
compatibility features. You enable individual DB2 compatibility features by
specifying a hexadecimal value for the registry variable or by using the symbolic
values to take full advantage of the DB2 compatibility features.

Run db2set to set the value to one of the symbolic values that are listed in
Table 2-1.

Table 2-1 DB2_COMPATIBILITY_VECTOR symbolic values

About the examples in this section: The examples in this section illustrate
techniques for handling exceptions in the database enablement process using
both PL/SQL and SQL Procedural Language (SQL PL). To understand these
examples, you need prior application development experience in either Oracle
PL/SQL or DB2 SQL PL.

If no DDL is specified, the examples in this book are based on the tables and
other database objects that are included in Appendix E, “Code samples” on
page 351 or from the DB2 Sample database that is provided at DB2
installation time.

Symbol Description

ORA Oracle full compatibility set

SYB Sybase full compatibility set

MYS MySQL full compatibility set
22 Oracle to DB2 Conversion Guide: Compatibility Made Easy

You can also selectively enable specific compatibility features by setting specific
pieces of the DB2_COMPATIBILITY_VECTOR registry variable. For best results, when
established, keep the selected compatibility level for the life of the database.
Table 2-2 presents the possible variable settings for the
DB2_COMPATIBILITY_VECTOR registry variable.

Table 2-2 DB2_COMPATIBILITY_VECTOR values

Bit position Compatibility feature Description

1 (0x01) ROWNUM Enables the use of ROWNUM as a synonym for
ROW_NUMBER() OVER(), and permits ROWNUM to
appear in the WHERE clause of SQL statements.

2 (0x02) DUAL Resolves unqualified table references to “DUAL” as
SYSIBM.DUAL.

3 (0x04) Outer join operator Enables support for the outer join operator (+).

4 (0x08) Hierarchical queries Enables support for hierarchical queries using the
CONNECT BY clause.

5 (0x10) NUMBER data typea Enables the NUMBER data type and associated numeric
processing.

6 (0x20) VARCHAR2 data typea Enables support for the VARCHAR2 and NVARCHAR2
data types and associated character string processing.

7 (0x40) DATE data typea Enables the interpretation of the DATE data type as the
TIMESTAMP(0) data type, a combined date and time
value. For example, “VALUES CURRENT DATE” in date
compatibility mode returns a value such as
2011-02-17-10.43.55.

8 (0x80) TRUNCATE TABLE Enables alternative semantics for the TRUNCATE
statement, under which IMMEDIATE is an optional keyword
that is assumed to be the default if not specified. An
implicit commit operation is performed before the
TRUNCATE statement runs if the TRUNCATE statement is not
the first statement in the logical unit of work.

9 (0x100) Character literals Enables the assignment of the CHAR or GRAPHIC data
type (instead of the VARCHAR or VARGRAPHIC data
type) to character and graphic string constants whose
byte length is less than or equal to 254.

10 (0x200) Collection methods Enables the use of methods to perform operations on
arrays, such as first, last, next, and previous. Also enables
the use of parentheses in place of square brackets in
references to specific elements in an array; for example,
array1(i) refers to element i of array1.
 Chapter 2. Language compatibility features 23

You must set the DB2_COMPATIBILITY_VECTOR registry variable to the wanted level
before you create a database, as shown in Example 2-1. In addition, you must
also restart the DB2 instance after the value is changed for it to take effect.

Example 2-1 Setting DB2_COMPATIBILITY_VECTOR

db2set DB2_COMPATIBILITY_VECTOR=ORA

The DB2_DEFERRED_PREPARE_SEMANTICS registry variable also enhances
compatibility between Oracle and DB2 user applications, such as those written in
Java. By setting this registry variable to YES, dynamic SQL statements are not
evaluated at the PREPARE step, but rather are evaluated on OPEN or EXECUTE
calls. You can use this setting to take advantage of the DB2 implicit data type
casting feature. It also avoids errors that might otherwise occur during the
PREPARE step when untyped parameter markers are present.

11 (0x400) Data dictionary-compatible
viewsa

Enables the creation of data dictionary-compatible views.

12 (0x800) PL/SQL compilationb Enables the compilation and execution of PL/SQL
statements and language elements.

13 (0x1000) Insensitive cursors Enables cursors that are defined with WITH RETURN to
be insensitive if the select-statement does not explicitly
specify FOR UPDATE.

14 (0x2000) INOUT parameters Enables the specification of DEFAULT for INOUT parameter
declarations

15 (0x8000) LIMIT and OFFSET clauses Enables the use of the MySQL- and
PostgreSQL-compatible LIMIT and OFFSET clauses on
fullselect, UPDATE, and DELETE statements.

17 (0x10000) SQL data-access-level
enforcement

Enables routines to enforce SQL data-access levels at
run time.

18 (0x20000) Oracle database link syntax Enables Oracle database link syntax for accessing
objects in other databases.

a. Applicable only during database creation. Enabling or disabling this feature affects only later
created databases.

b. For more information, see:
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.db2.luw.apdv.p
lsql.doc/doc/c0053608.html

Bit position Compatibility feature Description
24 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.db2.luw.apdv.plsql.doc/doc/c0053608.html

Example 2-2 demonstrates how to set this variable.

Example 2-2 Setting DB2_DEFERRED_PREPARE_SEMANTICS

db2set DB2_DEFERRED_PREPARE_SEMANTICS=YES

If you plan on using DBMS_JOB module/package, you might also want to activate
the Administrative Task Scheduler (ATS) facility. This facility is turned off by
default, although you can still define and modify jobs (tasks).

To enable the ATS, set the variable that is shown in Example 2-3.

Example 2-3 Setting DB2_ATS_ENABLE

db2set DB2_ATS_ENABLE=YES

Example 2-4 demonstrates the commands and the correct sequence of
these steps.

Example 2-4 Setting DB2_COMPATIBILITY_VECTOR

db2inst1> db2set DB2_COMPATIBILITY_VECTOR=ORA
db2inst1> db2set DB2_DEFERRED_PREPARE_SEMANTICS=YES
db2inst1> db2set DB2_ATS_ENABLE=YES
db2inst1> db2set -all
[i] DB2_COMPATIBILITY_VECTOR=ORA
[i] DB2_DEFERRED_PREPARE_SEMANTICS=YES
[i] DB2_ATS_ENABLE=YES
[i] DB2COMM=tcpip
[g] DB2INSTDEF=db2inst1
db2inst1> db2stop
SQL1064N DB2STOP processing was successful.
db2inst1> db2start
SQL1064N DB2STOP processing was successful
db2inst1> db2 "create database testdb PAGESIZE 32 K"

For more information, see the Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.gui.doc%2Fdoc%2Ft0054396.html
 Chapter 2. Language compatibility features 25

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.gui.doc%2Fdoc%2Ft0054396.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.gui.doc%2Fdoc%2Ft0054396.html

The following database configuration parameters can also simplify the
enablement process:

� AUTO_REVAL

The AUTO_REVAL automatic revalidation parameter determines the behavior
when invalid objects are encountered. The default value is DEFERRED, which
means that if an object, such as a view or function, is invalidated for any
reason (dropping of underlined table), an attempt to revalidate it is attempted
automatically the next time it is referenced. Changing the AUTO_REVAL
parameter value to DEFERRED_FORCE also allows new objects to be created
successfully, even though they might depend on invalid objects.

The DEFERRED_FORCE value also enables the CREATE value with an error
feature. For example, a procedure is created successfully even though it relies
on a table that does not exist yet. The procedure is marked as invalid until the
table is created, and the procedure is revalidated automatically on first use.
This process is especially convenient when you create large numbers of
objects where it is difficult to execute the scripts in the correct
dependency order.

� DECFLT_ROUNDING

You can use the DECFLT_ROUNDING database configuration parameter to
specify the rounding mode for a decimal floating point (DECFLOAT). This
parameter defaults to round-half-even, but you can set it to round-half-up to
more closely match the Oracle rounding mode.

For the change to take effect, you must deactivate the database after you
update the database configuration (Example 2-5).

Example 2-5 DB2 database parameter settings

connect to testdb;
db2 update db cfg using auto_reval DEFERRED_FORCE;
db2 update db cfg using decflt_rounding ROUND_HALF_UP;
db2 update db cfg using nchar_mapping CHAR_CU32;
db2 update db cfg using extended_row_sz ENABLE;
db2 connect reset;
db2 deactivate db testdb;
db2 connect to testdb;

� NCHAR_MAPPING

This parameter determines the data type mapping for national character
string data types in Unicode databases. It optimizes NCHAR types to
predominantly multi-byte or single-byte Unicode character environments. In
Europe, Africa, and the Americas, UTF-8 (1 - 4 bytes encoding) is more
efficient, and in Asia, UCS-2 (2 or 4 bytes encoding) is often more efficient.
26 Oracle to DB2 Conversion Guide: Compatibility Made Easy

NCHAR_MAPPING applies to all usages of NCHAR types in the database,
for example:

CREATE TABLE emp(name NVARCHAR(20), resume NCLOB(1M));

� EXTENDED_ROW_SZ

This is an important parameter that is introduced with DB2 10.5. The
maximum database page size in DB2 is 32 KB, and every row must fit into
one page. If your Oracle table has a larger row length, you must change your
table definition, for example, convert a VACHAR2 column into a CLOB
column. With EXTENDED_ROW_SZ enabled, this change is no longer necessary.
The maximum row length of a table can now be up to 1 MB.

As the page size limit is not lifted, DB2 converts the large string to LOB
internally. For the application, this behavior is transparent. For example:

CREATE TABLE emp(
name VARCHAR(4000),
address VARCHAR(4000),
cv VARCHAR(32000));

The page size limit is not enforced only during table creation, but also during
statement execution because the row length of a result set is bound to the
32 KB page size limit. This limit is now lifted by using the same internal DB2
mechanism as for table definitions. The following statement runs successfully
with EXTENDED_ROW_SZ enabled:

SELECT name, address, cv FROM emp ORDER BY name;

The only other thing you must do is define a 32 KB system temp table space
in your database.

2.1.2 PL/SQL record and collection types

DB2 provides extended support for SQL data types, such as NUMBER,
VARCHAR2, NVARCHAR2, and DATE, and some PL/SQL scalar types,
including BOOLEAN, BINARY_INTEGER, PLS_INTEGER, and RAW This
extended support ensures a simplified enablement process so that you can run
PL/SQL code in DB2 without code changes.

A summary of the supported PL/SQL and SQL data types is available in
Appendix B, “Data types” on page 309.

DB2 provides support for the most commonly used PL/SQL record and
collection types.
 Chapter 2. Language compatibility features 27

Record types
Record types are supported in PL/SQL contexts when declared as part of
PL/SQL packages (header or body). Alternatively, you can create the same type
of constructs outside of a PL/SQL package and still reference them inside of
routines and packages.

Declaring a record type
PL/SQL record type declarations are supported by the DB2 data server in
PL/SQL contexts. Globally, these types can be defined using SQL PL syntax.

A record type is a user definition of a record (row) that consists of one or more
identifiers (fields), each with a corresponding data type. Here is the syntax of a
user-defined record type:

TYPE <type_name> IS RECORD (fiel1 datatype, field2 datatype, …);

This statement is supported in a PL/SQL context, only as a part of a package
specification or package body. For a data type of the fields declared, you can use
any valid SQL data type or %TYPE attribute.

A record variable (or record) is an instance of a record type. The properties of the
record, such as its field names and types, are inherited from the record type. Dot
notation is used to reference fields in a record, for example, record.field.

Example 2-6 shows a package specification that creates a user-defined record
type. This type is immediately used as an IN OUT parameter in the
test_record_sp procedure. One of the fields in the records is defined with the
%TYPE attribute.

Example 2-6 Declaration and usage of a user-defined record type

CREATE OR REPLACE PACKAGE type_pkg
IS
TYPE t1_type IS RECORD (
 c1 T1.C1%TYPE,
 c2 VARCHAR(10)
);
 PROCEDURE test_record_sp (
 p_testing_rec IN OUT t1_type,
 p_status OUT VARCHAR2
);
END;
/

28 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The %TYPE attribute
DB2 supports the %TYPE attribute, commonly used in PL/SQL for declaration of
variables and parameters. Using this attribute ensures that the compatibility
between table columns and PL/SQL variables are automatically maintained. If
the data type of the column or the variable changes, there is no need to modify
the declaration code.

The %TYPE attribute requires the column name to be prefixed by a qualifying table
name in a dot notation. We could also assign %TYPE attribute with a name of a
previously declared variable. The data type of this column or variable is assigned
to the variable that is being declared with the %TYPE attribute.

For demonstration purposes, we create a table that is called Test_table and a
simple procedure that is named test_attribute1:

CREATE TABLE Test_table (ID INTEGER NOT NULL, col1 VARCHAR2(20));

Example 2-7 shows that the %TYPE attribute can also be used with formal
parameter declarations. Here v_variable1 is declared as a type of col1 of the
Test_table using the %TYPE attribute. The IN parameter p_id1 is also defined with
%TYPE attribute and has the same data type as the ID column of the Test_table.

Example 2-7 Using %TYPE in a parameter declaration

CREATE OR REPLACE PROCEDURE test_attribute1 (
 p_id1 IN Test_table.id%TYPE
)
IS
 v_variable1 Test_table.col1%TYPE := 'my_list';
BEGIN
 DBMS_OUTPUT.PUT_LINE('My ID is: ' || p_id1);
 DBMS_OUTPUT.PUT_LINE('Col1 one is now: ' || v_variable1);
END;
/

The previous example is equivalent to Example 2-8, where simple data type
declarations are used.

Example 2-8 Simple data type declaration

CREATE OR REPLACE PROCEDURE test_attribute2 (
 p_id2 IN INTEGER
)
IS
 v_variable2 VARCHAR2(20):= 'my_list';
BEGIN
 DBMS_OUTPUT.PUT_LINE('My ID is: ' || p_id2);
 Chapter 2. Language compatibility features 29

 DBMS_OUTPUT.PUT_LINE('Col1 one is now: ' || v_variable2);
END;
/

Example 2-9 shows another example of the %TYPE attribute.

Example 2-9 Using the %TYPE attribute

CREATE OR REPLACE PROCEDURE emp_comp_update (
 p_empno IN employee.EMPNO%TYPE,
 p_sal IN employee.salary%TYPE,
 p_comm IN employee.comm%TYPE
)
IS
 v_empno employee.EMPNO%TYPE;
 v_ename employee.LASTNAME%TYPE;
 v_job employee.job%TYPE;
 v_sal employee.SALARY%TYPE;
 v_comm employee.comm%TYPE;

BEGIN
 UPDATE employee SET salary = p_sal, comm = p_comm WHERE empno = p_empno
 RETURNING
 EMPNO,
 LASTNAME,
 job,
 SALARY,
 comm
 INTO
 v_empno,
 v_ename,
 v_job,
 v_sal,
 v_comm;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('New Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('New Commission : ' || v_comm);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END
30 Oracle to DB2 Conversion Guide: Compatibility Made Easy

/

-- Calling procedure emp_comp_update:
call emp_comp_update(000010, 6540, 1200)
Return Status = 0
Updated Employee # : 000010
Name : HAAS
Job : PRES
New Salary : 6540
New Commission : 1200

Collection types
The DB2 data server supports collection types, such as the VARRAY collection
type and associative arrays in PL/SQL. A PL/SQL collection is a set of ordered
data elements with the same data type. Individual data items in the set can be
referenced using a subscript notation within parentheses. When the database is
in Oracle compatible mode, you can use collection methods to obtain information
about collections or to modify them.

The VARRAY collection type
DB2 supports the VARRAY collection type, where each element of a scalar data
type is referenced by a positive integer, called the array index. The maximum
cardinality of the VARRAY collection type (the maximum value of the array index) is
defined in the type definition of the VARRAY collection but cannot
exceed 2147483647.

DB2 also supports nested array and row types. A nested type is a complex data
type that references another complex data type. You can nest the
following types:

� An array type as an element of an array type
� An array or row type as a field of a row type

The maximum nesting level for arrays and row types is 16. Performing inserts or
updates in deeply nested array and row types requires careful use of the syntax.

In partitioned environments, support is available only for top-level SET and CALL
statements that reference objects defined in nested types. Do not reference
objects with nested types in a subquery.
 Chapter 2. Language compatibility features 31

You cannot use chained access operators to access deep nested objects.
Instead, you must create a local variable and use one level access operator at
the time. For example, if you have an array of arrays of integers that are called
int_int_array that accesses the integer with the index 1 inside of the array index
2, you cannot access the array through the expression int_int_array(2)(1).
You must define a local variable (called int_array for example) and access it in
two steps, first using int_array:=int_int_array(2) and then using
int_array(1) to access the nested value.

The PL/SQL VARRAY syntax is as follows:

TYPE <varraytype> IS VARRAY(<max_index_value>) OF <datatype>;

Table 2-3 summarizes the VARRAY collection methods that are supported by the
DB2 data server in a PL/SQL context.

Table 2-3 VARRAY collection methods that are supported in PL/SQL

In DB2, do not define the VARRAY keyword either inside the PL/SQL packages or
in stand-alone CREATE TYPE statements.

Collection method Description

COUNT Returns the number of elements in a collection.

DELETE Removes all elements from a collection. You cannot delete
individual elements from a VARRAY collection type.

EXISTS (n) Returns TRUE if the specified element exists.

EXTEND Appends a single NULL element to a collection (NO-OP).

EXTEND (n) Appends n NULL elements to a collection (NO-OP).

EXTEND (n1, n2) Appends n1 copies of the n2th element to a collection
(NO-OP).

FIRST Returns the smallest index number in a collection.

LAST Returns the largest index number in a collection.

LIMIT Returns the maximum number of elements for a VARRAY.

NEXT (n) Returns the index number of the element immediately following
the specified element.

PRIOR (n) Returns the index number of the element immediately before
the specified element.

TRIM Removes a single element from the end of a collection.

TRIM (n) Removes n elements from the end of a collection.
32 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Example 2-10 shows how to declare a VARRAY as part of a PL/SQL package and
how to start this VARRAY and its collection methods in an anonymous block. This
syntax is similar to the syntax that is used in Oracle. The example also
demonstrates how to insert multiple rows in a table.

Example 2-10 VARRAY usage in DB2

-- Example setup:
CREATE TABLE emp(ENAME VARCHAR2(10))/
INSERT INTO emp(ENAME) VALUES
('Mike'), ('Peter'), ('Larry'), ('Joe'), ('Curly')/

CREATE PACKAGE Types_package
AS

TYPE emp_arr_typ IS VARRAY(5) OF VARCHAR2(10);
TYPE emp_group_typ is VARRAY(10) of emp_arr_typ; -- nesting arrays

END;
/

SET SERVEROUTPUT ON
/

DECLARE
emp_arr Types_package.emp_arr_typ;
emp_arr_1 Types_package.emp_arr_typ;
emp_arr_2 Types_package.emp_arr_typ;
emp_grp Types_package.emp_group_typ;

 CURSOR emp_cur IS SELECT ename FROM emp
 WHERE ROWNUM <= 5;
 i INTEGER := 0;
 k INTEGER := 0;
 l INTEGER := 0;

h INTEGER := 0;

BEGIN

 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := r_emp.ename;
 END LOOP;

 -- Use FIRST/LAST to specify the lower/upper bounds of a loop range:
 FOR j IN emp_arr.FIRST..emp_arr.LAST LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j));
 Chapter 2. Language compatibility features 33

 END LOOP;

-- Excercise nested collections:
h := emp_arr.LAST/2;

 FOR j IN emp_arr.FIRST..emp_arr.LAST LOOP
if j < h then

emp_arr_1[j] := emp_arr[j];
else

emp_arr_1[j-h+1] := emp_arr[j];
end if;

END LOOP;

-- create the nested array
emp_grp[1]:=emp_arr_1;
emp_grp[2]:= emp_arr_2;

-- to access the second group elements we use one of the existing emp_arr_x to
hold the temporary value (any variable of same tile would do)

emp_arr_1 := emp_grp[2];
FOR j IN emp_arr_1.FIRST..emp_arr_1.LAST LOOP

DBMS_OUTPUT.PUT_LINE(emp_arr(j));
 END LOOP;

-- Use NEXT(n) to obtain the subscript of the next element:
 k := emp_arr.FIRST;
 WHILE k IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(k));
 k := emp_arr.NEXT(k);
 END LOOP;

 -- Use PRIOR(n) to obtain the subscript of the previous element:
 l := emp_arr.LAST;
 WHILE l IS NOT NULL LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(l));
 l := emp_arr.PRIOR(l);
 END LOOP;

 DBMS_OUTPUT.PUT_LINE('COUNT: ' || emp_arr.COUNT);

 emp_arr.TRIM;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || emp_arr.COUNT);

 emp_arr.TRIM(2);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || emp_arr.COUNT);
34 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 DBMS_OUTPUT.PUT_LINE('Max. No. elements = ' || emp_arr.LIMIT);

END;
/

You can also use the DB2 SQL PL syntax to declare an array and use it in a
PL/SQL procedure in the same fashion as with VARRAY (Example 2-11). In this
example, myVarrayType is defined as a stand-alone array type with DB2 syntax
and used later in the TEST_ARRAY PL/SQL procedure.

Example 2-11 PL/SQL procedure with array type

CREATE TYPE myVarrayType as VARCHAR2(20) ARRAY[20];

CREATE OR REPLACE PROCEDURE test_array
IS
 my_arr myVarrayType;
BEGIN
 my_arr := myVarrayType('value1','value2','value3','value4');
 FOR j IN 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE(my_arr(j));
 END LOOP;
 my_arr.trim(1);
END;

Associative array (index by tables) data types
DB2 provides support for associative arrays and the collection methods that are
associated with them.

An associative array data type is a data type that is used to represent a
generalized array with no predefined cardinality. Associative arrays contain an
ordered set of zero or more elements of the same data type, where elements are
ordered by and can be referenced by an index value. The index values of
associative arrays are unique, are of the same data type, and do not have to
be contiguous.

The associative array data type supports the following associative
array properties:

� No predefined cardinality is specified for associative arrays. You can continue
to add elements to the array without concern for a maximum size, which is
useful if you do not know in advance how many elements constitute a set.

� The array index value can be a non-integer data type. The VARCHAR and
INTEGER values are supported index values for the associative array index.
 Chapter 2. Language compatibility features 35

� Index values do not have to be contiguous. In contrast to a conventional array,
which is indexed by position, an associative array is an array that is indexed
by values of another data type. There are not necessarily index elements for
all possible index values between the lowest and highest value. This feature is
useful, for example, if you want to create a set that stores names and phone
numbers. You can add pairs of data to the set in any order and sort using the
data item in the pair that is defined as the index.

� The elements in an associative array are sorted in ascending order of index
values. The insertion order of elements does not matter.

� Associative array data can be accessed and set using direct references or
using a set of available scalar functions.

� Associative arrays are supported in SQL PL contexts.

You can use associative arrays to manage and pass sets of values of the same
kind in the form of a collection. With this method, you can avoid the following
types of situations:

� Reducing the data to scalar values and using one-element-at-a-time
processing, which can cause network traffic problems.

� Using cursors that are passed as parameters.

� Reducing the data to scalar values and reconstituting these values as a set
using a VALUES clause.

Use the following syntax for the PL/SQL associative array:

TYPE <myArray> IS TABLE OF <myElementType> INDEX BY
INTEGER|BINARY_INTEGER|PLS_INTEGER|VARCHAR2(size);

Table 2-4 summarizes the associative array collection methods that are
supported by the DB2 data server in a PL/SQL context. In general, DB2 arrays
are not bounded and can increase dynamically. Therefore, EXTEND() is similar
to a NO-OP.

Table 2-4 Associative arrays collection methods that are supported in PL/SQL

Collection method Description

COUNT Returns the number of elements in a collection.

DELETE Removes all elements from a collection.

DELETE (n) Removes element n from an associative array. You cannot trim
elements from an associative array collection type.

DELETE (n1, n2) Removes all elements from n1 to n2 from an associative array.
You cannot trim elements from an associative array collection
type.
36 Oracle to DB2 Conversion Guide: Compatibility Made Easy

You can define associative arrays in DB2 inside the PL/SQL packages or using
SQL PL syntax as stand-alone types.

Example 2-12 shows how to create, initialize, and display the values of an
associative array. The ROWTYPE attribute is used to define emp_arr_typ.

Example 2-12 Associative array

CREATE OR REPLACE PACKAGE pkg_test_type
IS
 TYPE emp_arr_typ IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
END pkg_test_type;
/

DECLARE
 emp_arr pkg_test_type.emp_arr_typ;
 CURSOR emp_cur IS
 SELECT empno, ename
 FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;

EXISTS (n) Returns TRUE if the specified element exists.

EXTEND Appends a single NULL element to a collection (NO-OP).

EXTEND (n) Appends n NULL elements to a collection (NO-OP).

EXTEND (n1, n2) Appends n1 copies of the n2th element to a collection
(NO-OP).

FIRST Returns the smallest index number in a collection.

LAST Returns the largest index number in a collection.

LIMIT Returns the maximum number of elements for a VARRAY, or
NULL for nested tables.

NEXT (n) Returns the index number of the element immediately following
the specified element.

PRIOR (n) Returns the index number of the element immediately before
the specified element.

Collection method Description
 Chapter 2. Language compatibility features 37

 emp_arr(i).empno := r_emp.empno;
 emp_arr(i).ename := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;
/

Performance improvements using deep-nested objects
Nested object collections are frequently used by the OLTP applications as a
design pattern that is intended to minimize the total time that is required by the
application to retrieve full or partial complex data trees that are stored in classic
relational structures (data shredding). You can use the DB2 pureXML feature to
store this type of information. However, in certain cases, such as OLTP
environments when the workload requires sparse leaf field updates in the data
tree, the shredded form of storage might be the best storage form.

In these types of cases, retrieving the structure of the whole tree requires the
application to run multiple queries and to fetch data from multiple results sets,
each of which has different structures (heterogeneous queries). While under load
when the application goes from one result set to another, the network operations
and server-side session activity handling can introduce supplemental time
because of activity fragmentation.

When the data retrieval time for a full data tree is expected to be in tenths of a
millisecond range and a data tree be composed of tenths of distinct result sets
(queries), each millisecond (or less) counts. As a consequence, Oracle OLTP
applications tend to use trees of deep-nested objects and collections as a fast
transport method by wrapping multiple individual rows sets in one single
response object.

In DB2 10.5, you can use DB2 deep-nested object trees to achieve the same
result for cases when the Oracle deep-nested objects collections are used. Slight
differences in the type of objects that can be nested require changes to the
PL/SQL code, but the application side is less impacted. When migrating
deep-nested object collections, keep in mind the following rules:

� Replace Oracle structured Object types with DB2 Row types.

� Replace Oracle structured Object type constructors and methods with DB2
user-defined functions (UDFs).
38 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Example 2-13 exemplifies this conversion strategy. The application must retrieve
the data tree that is represented in Example 2-13 (for better readability) as an
XML document.

Example 2-13 XML encoding of the sample data model

<?xml version="1.0" encoding="UTF-8"?>
<customer> <!-- Object, deep nested L0 -->

<info> <!-- Object, deep nested L1 -->
<name> <!-- Object L2 -->

<first_name>John</first_name> <!-- Leaf value -->
<last_name>Smith</last_name>

</name>
<birth_date>1963-03-29</birth_date>

</info>
<adresses> <!-- Object Array, deep nested L1 -->

<address> <!-- Object, deep nested L2 -->
<phones> <!-- Object Array, deep nested L3 -->

<phone> <!-- Object L4 -->
<phone_provider>Bell</phone_provider>
<phone_number>000-111-2222</phone_number>

</phone>
<phone>

<phone_provider>Rogers</phone_provider>
<phone_number>000-111-2223</phone_number>

</phone>
</phones>
<country>Canada</country>
<country_div>Ontario</country_div>
<city>Toronto</city>
<street>Warden Ave.</street>
<number>8200</number>
<code>M2H-2P7</code>
<building_address> <!-- Object, deep nested L3 -->

<entry>A1</entry>
<floor>2</floor>
<apartment_number>120</apartment_number>

</building_address>
</address>

</adresses>
</customer>
 Chapter 2. Language compatibility features 39

Using the DB2 nested objects and object instance factory UDFs, you can build
the same document at the server side for retrieval in one single query
(Example 2-14).

Example 2-14 DB2 “object notation” encoding of the model from the previous example

CUSTOMER(
INFO(

NAME('John','Smith'),
 '1967-02-23'

),
ADDRESSES(

 ADDRESS(
 PHONES(
 PHONE(
 'Rogers',
 '000-111-2223'
)
), -- phone array
 'Canada', -- country
 'Ontario', -- country_div
 'Toronto', -- city
 'Warden Ave.', -- street
 'M2H-2P7', -- code
 BUILDING_ADDRESS(
 'A1', -- entry
 3, -- floor
 120 -- apartment
) -- building_ddress
) -- address

)-- address array
)

This structure can be retrieved at the application side using an application code
equivalent to the code in the JUnit test case (Example 2-15).

Example 2-15 JUnit test client sample that retrieves the model from the previous example

public class ReadNestedObjectTest extends TestBase {
...
public void testReadNestedObjectPackage()
 throws SQLException, ClassNotFoundException {

Connection con = getConnection();
CallableStatement cstmt = null;
try {

cstmt = con.prepareCall(
40 Oracle to DB2 Conversion Guide: Compatibility Made Easy

"CALL
dnobj.generate_customer_sample_object_array(?,?,?,?,?)"

);

cstmt.registerOutParameter(1, java.sql.Types.ARRAY);
cstmt.setInt(2, 1);// using same seed to keep the test happy

:)
cstmt.setInt(3, 1);
cstmt.setInt(4, 1);
cstmt.setInt(5, 1);

cstmt.execute();

// simply dump of the received data tree by walking
// the tree down for any "A" array or "S" structure
// entity detected, leaf field discrimination is positional
String result = sqlObjectToText("customers->",

cstmt.getArray(1));
...
// verify by comparing to the expected value
String expected=

 "customers->A[0]S[0]S[0]S[0]=John\n"
+ "customers->A[0]S[0]S[0]S[1]=Smith\n"
+ "customers->A[0]S[0]S[1]=2012-02-23 22:04:31.0\n"
+ "customers->A[0]S[1]A[0]S[0]A[0]S[0]=Rogers\n"
+ "customers->A[0]S[1]A[0]S[0]A[0]S[1]=000-111-2223\n"
+ "customers->A[0]S[1]A[0]S[1]=Canada\n"
+ "customers->A[0]S[1]A[0]S[2]=Ontario\n"
+ "customers->A[0]S[1]A[0]S[3]=Toronto\n"
+ "customers->A[0]S[1]A[0]S[4]=Warden Ave.\n"
+ "customers->A[0]S[1]A[0]S[5]=M2H-2P7\n"
+ "customers->A[0]S[1]A[0]S[6]S[0]=A1\n"
+ "customers->A[0]S[1]A[0]S[6]S[1]=3\n"
+ "customers->A[0]S[1]A[0]S[6]S[2]=120\n"

;
assertEquals(expected,result);

} finally {
if(cstmt != null) cstmt.close();
if(con != null) con.close();

}
}
...
// a method useful for walking a deep nested object and
// convert it in a simple textual representation
// the text representation is used for inspection and validation
 Chapter 2. Language compatibility features 41

// of the result
// In this representation Arrays are named with “A” and structures

“S”
public String sqlObjectToText(String name, Object obj) {

ByteArrayOutputStream bos = new ByteArrayOutputStream();
PrintStream out = new PrintStream(bos);

if (obj instanceof java.sql.Array) {
try {

Object[] a = (Object[]) ((Array) obj).getArray();
for (int i = 0; i < a.length; ++i) {

out.print(sqlObjectToText(name + "A[" + i + "]", a[i]));
}

} catch (SQLException e) {
out.println(name + "Array:-exception->" + e.getMessage());

}

} else if (obj instanceof java.sql.Struct) {
Struct a = (Struct) obj;
try {

Object[] attrs = a.getAttributes();
for (int i = 0; i < attrs.length; ++i) {

out.print(sqlObjectToText(name + "S[" + i + "]",
attrs[i]));

}
} catch (SQLException e) {

out.println(name + "struct:-exception->" + e.getMessage());
}

} else {
out.println(name + "=" + obj);

}
out.flush();
return bos.toString();

}

Object (structured) types are not supported in DB2. However, equivalent
structures exist to support the same functions. When you convert Oracle object
types (Example 2-16), you can use the DB2 ROW type to port the data structure
and use UDFs to port object methods.

Example 2-16 Oracle object sample

create or replace
TYPE PHONE_TYPE AS OBJECT

(

42 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 PHONE_PROVIDER VARCHAR2(32),
 PHONE_NUMBER VARCHAR2(32),

 CONSTRUCTOR FUNCTION PHONE_TYPE (
 p_phone_provider VARCHAR2,
 p_phone_nr VARCHAR2
)
 RETURN SELF AS RESULT

)
/
CREATE OR REPLACE
 TYPE BODY PHONE_TYPE AS
 CONSTRUCTOR FUNCTION PHONE_TYPE (
 p_phone_provider VARCHAR2,
 p_phone_nr VARCHAR2
)
 RETURN SELF AS RESULT
 AS
 BEGIN
 PHONE_PROVIDER := p_phone_provider;
 PHONE_NUMBER := p_phone_nr;
 RETURN;
 END;
END;
/

Example 2-17 shows the code that is converted to DB2 compatible syntax.

Example 2-17 Conversion to DB2 row type to allow deep nesting of the structures

create or replace
TYPE PHONE_TYPE AS ROW
(
 PHONE_PROVIDER VARCHAR2(32),
 PHONE_NUMBER VARCHAR2(32)
)

/
create or replace

FUNCTION PHONE (
 PHONE_PROVIDERVARCHAR2(32),
 PHONE_NUMBERVARCHAR2(32)
) RETURNS PHONE_TYPE
LANGUAGE SQL
BEGIN

declare OBJ PHONE_TYPE;
 set OBJ.PHONE_PROVIDER= PHONE_PROVIDER;
 Chapter 2. Language compatibility features 43

set OBJ.PHONE_NUMBER= PHONE_NUMBER;
RETURN OBJ;

END
/

To convert Oracle collections of structured objects (Example 2-18), you must
change the syntax of the type definition (Example 2-19).

Example 2-18 Oracle collection of a structured object sample

CREATE OR REPLACE
 TYPE PHONE_TYPE_ARRAY AS
 TABLE OF PHONE_TYPE
/

Example 2-19 Array of rows for the equivalent type definition of Oracle type

CREATE OR REPLACE
 TYPE PHONE_TYPE AS
 ARRAY[]
/

The %ROWTYPE attribute
DB2 also provides support for the %ROWTYPE attribute. In PL/SQL, the %ROWTYPE
attribute is used to declare PL/SQL variables of type record with fields that
correspond to the columns of a table or view. Each field in a PL/SQL record
assumes the data type of the corresponding column in the table. The fields inside
the records type are referred to by using dot notation, with the record name as
a qualifier.

Example 2-20 demonstrates a declaration of a variable that is associated with
the table T1 that is defined with the %ROWTYPE attribute. Note the calls to the
record fields with a dotted notation of <variable>.<table_field>.

Example 2-20 Using the %ROWTYPE attribute

CREATE TABLE t1 (key INTEGER NOT NULL, col1 VARCHAR2(20))/

insert into t1 values(1, 'A')
/

DECLARE
myvar1 T1%ROWTYPE; -- myvar is a row of type similar to table t1

begin
select * into myvar1 from t1 where key = 1;
44 Oracle to DB2 Conversion Guide: Compatibility Made Easy

DBMS_OUTPUT.put_line(myvar1.col1 ||':'||myvar1.key); -- print the
row
end;
/

Example 2-21 shows another example of the %ROWTYPE attribute.

Example 2-21 Using the %ROWTYPE attribute

CREATE OR REPLACE PROCEDURE delete_employee(
 p_empno IN employee.empno%TYPE
)
IS
 r_emp employee%ROWTYPE;
BEGIN
 DELETE FROM employee WHERE empno = p_empno
 RETURNING * INTO r_emp;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || r_emp.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' ||
r_emp.LASTNAME);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' ||
r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.salary);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || r_emp.comm);
 DBMS_OUTPUT.PUT_LINE('Department : ' ||
r_emp.WORKDEPT);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;
/

2.1.3 Subtypes

A subtype is a definition of a type that is based on a built-in type. Subtypes
provide a layer of abstraction between variables and parameters and the data
types that they use. This layer allows you to concentrate any changes to the data
types in one location. You can add constraints to subtypes so that they cannot be
nullable or limited to a specific range of values.
 Chapter 2. Language compatibility features 45

Subtypes can be defined in the following statements as user-defined data types
for variables and parameters:

� CREATE PACKAGE (PL/SQL)
� CREATE PACKAGE BODY (PL/SQL)
� CREATE PROCEDURE (PL/SQL)
� CREATE FUNCTION (PL/SQL)
� CREATE TRIGGER (PL/SQL)
� Anonymous blocks (PL/SQL)

Here is the syntax for subtypes:

SUBTYPE type-name IS built-in-type RANGE start-value .. end-value NOT
NULL

� type-name specifies an identifier for the subtype.

� Built-in-type specifies the data type that the subtype is based on. You
cannot specify BOOLEAN as the built-in type.

� RANGE start-value .. end-value is an optional clause and defines a range
of values within the domain of the subtype that is valid for the subtype.

� NOT NULL is optional too and defines that the subtype is not nullable.

Example 2-22 explains the usage of the subtypes in PL/SQL code.

Example 2-22 Example of subtype usage

DECLARE
SUBTYPE tinyint IS INTEGER RANGE -256..255 NOT NULL;
val tinyint := 255;

BEGIN
val := val + 1;

END;
/

At run time, you receive the following error message:

SQL20552N The cast or assignment failed because the value does not
conform to the data type constraint of the user-defined type.
User-defined type: "TINYINT". Value: "256".

This error message appears when the values of a parameter or a variable that is
based on the subtype violate the boundaries of the defined range of that subtype.
46 Oracle to DB2 Conversion Guide: Compatibility Made Easy

2.1.4 Basic procedural statements

The programming statements that can be used in a PL/SQL application include
the assignment statement and SQL statements, such as INSERT, UPDATE, DELETE,
MERGE, SELECT INTO, NULL, and EXECUTE IMMEDIATE.

Assignment statement
The assignment statement sets a previously declared variable or formal
parameter (OUT or IN OUT) to the value of an expression. Example 2-23 shows the
assignment syntax in several combinations, such as variables, parameters, and
constants.

Example 2-23 Assignment statement

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
 p_deptno IN NUMBER,
 p_comm_rate IN NUMBER,
 p_base_annual OUT NUMBER
)
IS
 todays_date DATE;

 -- CONSTANT assignment only in DECLARE section --------------------

 rpt_title_base CONSTANT VARCHAR2(60) := 'Report For Department # ';
 rpt_title VARCHAR2(60);
 base_sal INTEGER;
 base_comm_rate NUMBER;
BEGIN
 todays_date := SYSDATE;

 -- Expression assignment --

 rpt_title := rpt_title_base || ' ' || p_deptno || ' on '
 || todays_date;
 base_sal := 35525;
 base_comm_rate := p_comm_rate;

 -- Functional assignment ---
p_base_annual := ROUND(base_sal * base_comm_rate, 2);
DBMS_OUTPUT.PUT_LINE(rpt_title);
 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || p_base_annual);
END;
/

 Chapter 2. Language compatibility features 47

The variable assignment
The variable assignment is the most common form of assignment statement in
PL/SQL. You can assign a variable, a function returned value, a BOOLEAN
value, an array element, an expression, a SQL result, and so on. For the
CONSTANT variable, you must initialize or assign it in the DECLARE section.

Expanding on Example 2-23 on page 47, Example 2-24 demonstrates the
variable assignment, where the cursor cur0 is assigned the current row.

Example 2-24 Variable assignment statement

DECLARE
 found BOOLEAN;
 var1 NAMEARRAY;
 cur0 SYS_REFCURSOR;
 n number :=0;
BEGIN
 FOR cur0 IN (SELECT name FROM sysibm.systables ORDER BY 1) LOOP
 n := n + 1;
 var1(n):= cur0.name;
 IF (var1(n) = 'TEST') THEN
 found := TRUE;
 dbms_output.put_line('TEST table found at index entry = '||
N);
 EXIT;
 END IF;
 END LOOP;
END;
/

PL/SQL block structures
PL/SQL block structures can be included within a PL/SQL procedure, function, or
trigger definitions, or can be executed independently as an anonymous block.
PL/SQL block structures and the anonymous block statement contain one or
more of the following sections:

� An optional declaration section
� A mandatory executable section
� An optional exception section

Each of these sections can include data type and variable declarations, SQL or
PL/SQL statements, or other PL/SQL language elements.
48 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Example 2-25 demonstrates the usage of a PL/SQL block.

Example 2-25 PL/SQL block

DECLARE
 var1 VARCHAR2(200);
BEGIN
 var1:= 'declare currentime timestamp;
 BEGIN
 currentime := sysdate;
 dbms_output.put_line(''The time now is ''||currentime);
 END';
 EXECUTE IMMEDIATE var1;
END;
/

For more details about anonymous blocks, see “Anonymous blocks” on page 84.

SQL statements
You can use SQL statements that are supported within PL/SQL contexts to
modify data or to specify the manner in which statements are executed. These
SQL statements have the same usage and meaning in both PL/SQL and
SQL PL.

Table 2-5 lists the SQL statements that can be run by the DB2 server within
PL/SQL contexts.

Table 2-5 SQL statements

Command Description

DELETE Deletes rows from a table.

INSERT Inserts rows into a table.

MERGE Inserts rows into a table.

SELECT INTO Retrieves a single row from a table.

UPDATE Updates rows in a table.
 Chapter 2. Language compatibility features 49

The NULL statement
The NULL statement can act as a placeholder where an executable statement is
required, but an SQL operation is not wanted. Example 2-26 demonstrates a
NULL statement that is used as a minimum executable statement that must exist
between the BEGIN-END block; otherwise, a syntax error occurs.

Example 2-26 NULL statement usage

BEGIN
NULL;

END;
/

Sometimes, a NULL statement is used in the EXCEPTION section to indicate that
the raised exception condition should be ignored and that processing should
continue to next sequential block or statement.

The EXECUTE IMMEDIATE statement
The EXECUTE IMMEDIATE statement prepares an executable form of an SQL
statement from an SQL character string and then executes the SQL statement.
EXECUTE IMMEDIATE combines the basic functions of the PREPARE and EXECUTE
statements. In addition, the EXECUTE IMMEDIATE statement can execute an
anonymous PL/SQL block. Because the EXECUTE IMMEDIATE statement is used
primarily for dynamic SQL execution, this topic is described in 2.1.8, “Static and
dynamic SQL support” on page 69.

The RETURNING INTO clause
A useful feature of SQL execution is the RETURNING INTO clause that can be
optionally appended to the INSERT, DELETE, or UPDATE statements, which typically
does row by row processing. You can use this feature to access the changed
rows in an atomic manner without making an additional selection, which can
have locking implications, because the selection happens later and makes the
SQL code more efficient. If there is not a changed row, the RETURNING INTO
values are undefined.

Example 2-27 shows how the RETURNING INTO clause is used with the INSERT,
DELETE, and UPDATE statements that return one value. This example also
demonstrates an arithmetic operation with implicit casting in the VALUES clause of
the SELECT statement.

Example 2-27 DELELE, INSERT, or UPDATE with RETURNING INTO

CREATE OR REPLACE PROCEDURE update_emp(v_empid VARCHAR2,
 d_lastname OUT VARCHAR2, d_firstname OUT VARCHAR2)
IS
50 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 d_empid VARCHAR2(6);
BEGIN
-- Return names information about deleted rows

 DELETE FROM emp WHERE empid=v_empid
 RETURNING emplastname, empfirstname INTO d_lastname, d_firstname;

-- Return empid after modification, as all the employee IDs will have
the prefix '99'

 INSERT INTO emp(empid, emplastname, empfirstname)
 VALUES(990000+v_empid, d_lastname, d_firstname)
 RETURNING empid INTO d_empid;

-- Return properly formated names with INITCAP as part of data cleaning
 UPDATE emp SET emplastname = INITCAP(emplastname),

 empfirstname = INITCAP(empfirstname)
 WHERE empid=d_empid
 RETURNING emplastname, empfirstname INTO d_lastname, d_firstname;
END;
/

Assume that you have a denormalized EMP table with three columns (empid,
emplastname, and empfirstname). The example hypothetically cleans up
(maintains) data to change the empid, lastname, and firstname of the EMP table.

The BULK COLLECT and FORALL statements
DB2 supports BULK COLLECT and FORALL syntax, including INDICES OF and VALUES
OF clauses in FORALL. BULK COLLECT and FORALL are PL/SLQ statements that
optimize processing and fetching of collection information from associative arrays
and varrays.

Statement attributes
You can use the following PL/SQL attributes to determine the effect of an
SQL statement:

� SQL%FOUND

This attribute has a Boolean value that returns TRUE if at least one row is
affected by an INSERT, UPDATE, or DELETE statement, or if a SELECT INTO
statement retrieved one row.
 Chapter 2. Language compatibility features 51

Example 2-28 shows an anonymous block in which a row is inserted and a
status message is displayed.

Example 2-28 Using SQL%FOUND

BEGIN
 INSERT INTO employee (empno, lastname, job, salary)
 VALUES (9001, 'JONES', 'CLERK', 850.00);
 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Row has been inserted');
 END IF;
END;
/

� SQL%NOTFOUND

This attribute has a Boolean value that returns TRUE if no rows are affected by
an INSERT, UPDATE, or DELETE statement. The value is also TRUE if no row is
retrieved by a SELECT INTO statement, although it is more typical to check for a
NO_DATA_FOUND exception rather than SQL%NOTFOUND in this case.

Example 2-29 shows how to use SQL%NOTFOUND.

Example 2-29 Using SQL%NOTFOUND

BEGIN
 UPDATE employee SET hiredate = '03-JUN-07' WHERE empno = 90000;
 IF SQL%NOTFOUND THEN
 DBMS_OUTPUT.PUT_LINE('No rows were updated');
 END IF;
END;
/

� SQL%ROWCOUNT

This attribute has an integer value that represents the number of rows that are
affected by an INSERT, UPDATE, or DELETE statement. Example 2-30 illustrates
how to use SQL%ROWCOUNT.

Example 2-30 Using SQL%ROWCOUNT

BEGIN
 UPDATE employee SET hiredate = '03-JUN-07' WHERE empno = 000010;
 DBMS_OUTPUT.PUT_LINE('# rows updated: ' || SQL%ROWCOUNT);
END;
/

52 Oracle to DB2 Conversion Guide: Compatibility Made Easy

2.1.5 Control of flow statements

The control of flow statements are programming constructions that you can use
to group, relate, and organize different SQL or PL/SQL statements through
internal procedural logic rather than relying on their sequential execution. These
statements control the execution logic (“flow”) of the basic procedural statements,
statement blocks, routines, and so on. As such, they are an important part of the
programming concepts in PL/SQL and are supported by both Oracle and DB2.

Decision making statement: IF and CASE statements
You can use the IF statement within PL/SQL contexts to run PL/SQL statements
that are based on certain criteria.

Example 2-31 shows an IF THEN ELSIF END IF routing statement.

Example 2-31 Routing statement

DECLARE
 a INTEGER := 1;
 b VARCHAR2(30) := 'default string';
BEGIN
 IF (a = 1) THEN
 B:='this is string';
 ELSIF (a = 2) THEN
 B:='this is another string';
 ELSE
 NULL;
 END IF;
END;
/

Similar to an IF statement, CASE statements and expressions execute one or a
set of statements when a specified search condition is true. The CASE statement
is a stand-alone statement that is distinct from the CASE expression, which must
appear as part of an expression.

CASE statements and expressions can take one of the following forms:

� Simple CASE statement

The simple CASE statement and expression attempt to match an expression
(known as the selector) to another expression that is specified in one or more
WHEN clauses. A match results in the execution of one or more
corresponding statements.
 Chapter 2. Language compatibility features 53

Example 2-32 to Example 2-34 on page 55 present examples of using a
simple CASE statement and expression in SQL and PL/SQL, where the
assignments are based on matched values for a department code in the
employee table.

Example 2-32 Simple CASE expression in SQL

SELECT LASTNAME, empno,
 (CASE workdept
 WHEN 'A00' THEN 'SPIFFY COMPUTER SERVICE DIV.'
 WHEN 'B01' THEN 'PLANNING'
 WHEN 'C01' THEN 'INFORMATION CENTER'
 WHEN 'D01' THEN 'DEVELOPMENT CENTER'
 WHEN 'E01' THEN 'SUPPORT SERVICES'
 WHEN 'E11' THEN 'OPERATIONS'
 ELSE 'Unknown'
 END) current_department
FROM employee
ORDER BY empno;

Example 2-33 shows the CASE statement from Example 2-32 in PL/SQL.

Example 2-33 CASE statement in PL/SQL

BEGIN
 FOR my_cursor IN (SELECT lastname, empno, workdept FROM employee
ORDER BY empno) LOOP
 DBMS_OUTPUT.PUT(my_cursor.lastname || ', ' || my_cursor.empno ||
' belongs to: ');
 CASE my_cursor.workdept
 WHEN 'A00' THEN
 DBMS_OUTPUT.PUT_LINE('SPIFFY COMPUTER SERVICE DIV.');
 WHEN 'B01' THEN
 DBMS_OUTPUT.PUT_LINE('PLANNING');
 WHEN 'C01' THEN
 DBMS_OUTPUT.PUT_LINE('INFORMATION CENTER');
 WHEN 'D01' THEN
 DBMS_OUTPUT.PUT_LINE('DEVELOPMENT CENTER');

ELSE
 DBMS_OUTPUT.PUT_LINE('Not IT related');
 END CASE;
 END LOOP;
END;
/

54 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Example 2-34 shows a simple CASE expression in PL/SQL.

Example 2-34 Simple CASE expression in PL/SQL

DECLARE
 workdept VARCHAR2(3);
 current_dept VARCHAR2(40);
BEGIN
 current_dept := CASE workdept
 WHEN 'A00' THEN 'SPIFFY COMPUTER SERVICE DIV.'
 WHEN 'B01' THEN 'PLANNING'
 WHEN 'C01' THEN 'INFORMATION CENTER'
 WHEN 'D01' THEN 'DEVELOPMENT CENTER'
 WHEN 'E01' THEN 'SUPPORT SERVICES'
 WHEN 'E11' THEN 'OPERATIONS'
 ELSE 'Not IT related'
 END;
 DBMS_OUTPUT.PUT_LINE(current_dept);
END;
/

� Searched CASE statement

A searched CASE statement uses one or more Boolean expressions to
determine which statements to execute.

Example 2-35 presents an example of a searched CASE statement. The usage
of the searched CASE expression in PL/SQL is similar to the simple CASE
shown in Example 2-32 on page 54; only a comparison expression is used to
find a match.

Example 2-35 Searched CASE

SELECT lastname, empno,
 (CASE
 WHEN salary < 30000 THEN 'Below Average'
 WHEN salary BETWEEN 30000 AND 55000 THEN 'Average'
 WHEN salary > 55000 THEN 'Above Average'
 ELSE 'Need evaluation'
 END) salary_review
FROM employee
ORDER BY empno;

Loops and iterative statements
To repeat a series of commands in PL/SQL code, DB2 supports loops and
iterative statements, such as EXIT, FOR, LOOP, and WHILE statements.
 Chapter 2. Language compatibility features 55

The LOOP statement executes a sequence of one or more PL/SQL or SQL
statements within a PL/SQL code block multiple times, and it could be part of a
PL/SQL procedure, function, or anonymous block. These statements are
executed during each iteration of the loop. The following lines show the syntax of
a simple LOOP statement with the optional EXIT WHEN condition:

LOOP
 <statements>
 [< EXIT WHEN condition;>]
END LOOP;

The EXIT statement terminates execution of a loop within a PL/SQL code block. It
can be embedded within a FOR, LOOP, WHILE statement, or within a PL/SQL
procedure, function, or anonymous block statement.

Example 2-36 shows basic LOOP and EXIT statements within an
anonymous block.

Example 2-36 Classic LOOP statement

DECLARE
 a INTEGER := 0;
BEGIN
 a:= 1;
 LOOP
 DBMS_OUTPUT.PUT_LINE('this is string #'|| a);
 EXIT WHEN a <= 10;
 a:=a+1;
 END LOOP;
END;
/

The WHILE statement repeats a set of SQL statements if a specified expression is
true and it can be embedded within a PL/SQL procedure, function, or anonymous
block statement. The condition is evaluated immediately before each entry into
the loop body. The following lines are the syntax of the WHILE LOOP statement:

WHILE <condition> LOOP
 <statements>
 [< EXIT WHEN condition>]
END LOOP;
56 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Example 2-37 shows a WHILE LOOP statement.

Example 2-37 WHILE LOOP

DECLARE
 a INTEGER := 0;
BEGIN
 a:= 1;
 WHILE (a <= 10) LOOP
 DBMS_OUTPUT.PUT_LINE('this is string #'|| a);
 a:=a+1;
 END LOOP;
END;
/

A FOR LOOP over a predetermined number of values (FOR with integer variant) can
iterate over a range of values to execute a set of SQL statements more than
once. With the REVERSE keyword, it decrements the variable over the range of
value. The syntax is as follows:

FOR <loop_variable> IN [REVERSE] <range_of_values> LOOP
 <statements>
 [<EXIT WHEN condition>]
END LOOP;

Example 2-38 shows a simple FOR (integer variant) statement (or LOOP) that loops
10 times.

Example 2-38 FOR LOOP over predetermined number of values

DECLARE
 a INTEGER := 0;
BEGIN
 a:= 1;
 FOR a in 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE('this is string #'|| a);
 END LOOP;
END;
/

Another variation of the FOR LOOP statement in PL/SQL is the FOR (cursor variant)
statement. The cursor FOR loop statement opens a previously declared cursor,
fetches all rows in the cursor result set, and then closes the cursor. The columns
of the SELECT statement are directly accessible inside the body of the FOR LOOP
with the <for_loop_variable.column_name> syntax.
 Chapter 2. Language compatibility features 57

Example 2-39 shows a FOR LOOP statement over a cursor statement that uses the
cursor values mapped from the cursor column for display.

Example 2-39 A FOR LOOP statement over a cursor

DECLARE
 CURSOR ACCOUNT_cur IS
 SELECT ACCOUNT_id, NUM_PROJECTS
 FROM ACCOUNTS WHERE CREATE_DATE < SYSDATE + 30;
BEGIN
 FOR ACCOUNT_rec IN ACCOUNT_cur
 LOOP
 update_ACCOUNT (ACCOUNT_rec.ACCOUNT_id,
ACCOUNT_rec.NUM_PROJECTS);
 END LOOP;
END;

GOTO and LABEL statements
Do not use GOTO instructions outside of assembler code. However, you can use
the GOTO and LABLE statements in case of errors to unconditionally redirect the
programming logic to a statement or block label. DB2 supports the GOTO
label_name statement, where the label must be defined with the <<label_name>>
syntax and must be contained in the same PL/SQL block, either at the same level
or higher up in the hierarchy.

Example 2-40 shows how to use a GOTO statement to exit the loop prematurely to
the label exit_perm.

Example 2-40 GOTO statement

BEGIN
 FOR i IN (SELECT table_name FROM user_tables)
 LOOP
 DBMS_OUTPUT.PUT_LINE(i.table_name);
 IF (i.table_name = 'DEPARTMENT') THEN GOTO exit_prem; END IF;
 DBMS_OUTPUT.PUT_LINE(i.table_name);
 END LOOP;
 <<exit_prem>>
 DBMS_OUTPUT.PUT_LINE('done');
END;
/

58 Oracle to DB2 Conversion Guide: Compatibility Made Easy

2.1.6 Condition (exceptions) handling

An exception is a separately encapsulated section of the SQL procedural code
that captures and conditionally processes runtime errors. DB2 supports most of
the Oracle PL/SQL syntax for exception handling, such as defining exception
blocks, declaring custom exceptions, and raising custom defined errors (RAISE
and RAISE_APPLICATION_ERROR).

Example 2-41 shows the general syntax for exception handling in a BEGIN block.

Example 2-41 The general syntax for exception handling in a BEGIN block

BEGIN
< executable statements>
EXCEPTION
 WHEN condition1 [OR condition2]... THEN
 <exception handler logic>
 [WHEN condition3 [OR condition4]... THEN
 <exception handler logic>]...
 END;

Predefined exceptions
DB2 provides support for the following Oracle predefined exceptions:

� CASE_NOT_FOUND
� CURSOR_ALREADY_OPEN
� DUP_VAL_ON_INDEX
� INVALID_CURSOR
� INVALID_NUMBER
� NO_DATA_FOUND
� OTHERS
� NOT_LOGGED_ON
� SUBSCRIPT_BEYOND_COUNT
� LOGIN_DENIED
� SUBSCRIPT_OUTSIDE_LIMIT
� TOO_MANY_ROWS
� VALUE_ERROR
� ZERO_DIVIDE

These exceptions use the following general syntax:

WHEN exception_name THEN <executable statements>
 Chapter 2. Language compatibility features 59

Figure 2-1 demonstrates an anonymous block that returns a warning as a result
of caching a NO_DATA_FOUND exception in CLPPlus.

Figure 2-1 Receiving NO_DATA_FOUND exception in an anonymous block

Custom exceptions
DB2 supports defining and calling custom defined exceptions. In Example 2-42,
custom exceptions are defined with an exception declaration and the PRAGMA
EXCEPTION_INIT syntax.

Example 2-42 Custom exception

CREATE OR REPLACE PROCEDURE Remove_Account
(p_AccountId IN accounts.acct_id%TYPE,
 p_DeptCode IN accounts.dept_code%TYPE
) IS
 -- exception declaration
 e_AccountNotRegistered EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_AccountNotRegistered, -20050);

 BEGIN
 DELETE FROM accounts
 WHERE acct_id = p_AccountId
 AND dept_code = p_DeptCode;

 IF SQL%NOTFOUND THEN
 RAISE e_AccountNotRegistered;
 END IF;
 EXCEPTION
 WHEN e_AccountNotRegistered THEN
 DBMS_OUTPUT.PUT_LINE('Account ' || p_AccountId || ' does not exist.');
 WHEN others THEN
 RAISE
END Remove_Account;
/

60 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Custom exceptions can be declared in a separate package to make them “global”
and reusable throughout the application. Example 2-43 declares a user-defined
exception named AccountNotRegistered in the package header. A separate
procedure named Remove_Account reuses this global exception by calling it with
<package_name>.<exception_name>, as shown in Example 2-44.

Example 2-43 Custom exception in a separate package

CREATE OR REPLACE PACKAGE pkgs_employees_activity AS
-- exception declaration
 e_AccountNotRegistered EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_AccountNotRegistered, -20050);

 < procedures and functions declaration >

END pkgs_employees_activity;
/

Example 2-44 Exception call in a procedure

CREATE OR REPLACE PROCEDURE Remove_Account
 (p_AccountId IN accounts.acct_id%TYPE,
 p_DeptCode IN accounts.dept_code%TYPE
) IS

BEGIN
 < procedure specific code >

EXCEPTION
 WHEN pkgs_employees_activity.e_AccountNotRegistered THEN

 < application specific handling >

 RAISE;
END;
/

RAISE statement
You can use the RAISE statement to raise a previously defined condition. For
details, see Example 2-43 and Example 2-44.
 Chapter 2. Language compatibility features 61

RAISE_APPLICATION_ERROR
The RAISE_APPLICATION_ERROR procedure provides the capability to intentionally
stop a process within an SQL procedural code from which it is called to cause an
exception. The exception is handled in the same manner as described
previously. In addition, the RAISE_APPLICATION_ERROR procedure makes a
user-defined code and error message available to the program, which can then
be used to identify the exception. This procedure uses the following
general syntax:

RAISE_APPLICATION_ERROR(error_number, message);

Example 2-45 shows a procedure that is based on the EMPLOYEES table with
multiple declarations of RAISE_APPLICATION_ERROR and its output when executed
for an employee who has no corresponding manager ID in the table.

Example 2-45 RAISE_APPLICATION _ERROR

CREATE OR REPLACE PROCEDURE verify_employee
(p_empno NUMBER
) IS
 v_ename employees.last_name%TYPE;
 v_dept_code employees.dept_code%TYPE;
 v_mgr employees.emp_mgr_id%TYPE;
 v_hiredate employees.create_date%TYPE;

BEGIN

 SELECT last_name, dept_code, emp_mgr_id, create_date
 INTO v_ename, v_dept_code, v_mgr, v_hiredate
 FROM employees
 WHERE emp_id = p_empno;

 IF v_ename IS NULL THEN
 RAISE_APPLICATION_ERROR (-20010, 'No name entered for ' || p_empno);
 END IF;

 IF v_dept_code IS NULL THEN
 RAISE_APPLICATION_ERROR (-20020, 'No department entered for' || p_empno);
 END IF;

 IF v_mgr IS NULL THEN
 RAISE_APPLICATION_ERROR (-20030, 'No manager entered for ' || p_empno);
 END IF;

 IF v_hiredate IS NULL THEN
 RAISE_APPLICATION_ERROR (-20040, 'No hire date entered for ' || p_empno);
62 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 END IF;

 DBMS_OUTPUT.PUT_LINE ('Employee ' || p_empno || ' validated without errors');

EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('SQLCODE: ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE ('SQLERRM: ' || SQLERRM);
END;
/

Output:
SQL> set serveroutput on
SQL> execute verify_employee (1);

SQLCODE: -438
SQLERRM: SQL0438N Application raised error or warning with diagnostic text:
"No manager entered for 1".
SQLSTATE=UD999
DB250000I: The command completed successfully.

For help with mapping PL/SQL error codes and exception names to DB2 error
codes and SQLSTATE values, see the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.apdv.plsql.doc/doc/r0055262.html

2.1.7 Cursor data type

DB2 supports Oracle PL/SQL cursors and associated data types. A cursor is a
built-in data type that defines a result set of rows that you can process with an
application or PL/SQL logic. You can use a cursor in the following contexts:

� User-defined cursors types
� Global variables
� Parameters to procedures and functions
� Local variables
� Return types of functions

To use cursors, follow this general process:

1. Define the cursor with the associated SELECT statement when appropriate.

2. Open the cursor with optional input parameters.
 Chapter 2. Language compatibility features 63

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.plsql.doc/doc/r0055262.html

3. Fetch one record at a time in a loop, moving the columns values of every
record into application host variables or a PL/SQL variable (sometimes
multiple fetches can be done at once to batch the fetches).

4. Close the cursor to free database resources.

An application (PL/SQL program or client program) consumes the records that
are produced by the cursors by fetching the records from the cursor one by one.
Cursors are record-at-a-time lengthy operations. Thus, they are less efficient
than a set-at-a-time operation. Cursors hold resources while opened. When a
cursor is the main construct that is used for passing information from RDBMS to
client applications, you must manage them properly. Close cursors as soon as
they are no longer in use or minimize cursors use for better performance.

Depending on the cursor type, the operations that you do on cursors might be
slightly different.

REF CURSOR
REF CURSOR is a type in PL/SQL that allows you to define cursor variables. These
variables hold the pointers to the cursors. Cursor variables are frequently used to
pass the result sets from the queries between various PL/SQL objects. In DB2,
REF CURSOR must be created inside a package.

Example 2-46 shows REF CURSOR with the Cur0 cursor variable.

Example 2-46 Using REF CURSOR

CREATE OR REPLACE PACKAGE ref_cursor_pack1
IS
 TYPE rcursor IS REF CURSOR;
END;
/
CREATE OR REPLACE PROCEDURE ref_cursor1(table_in IN VARCHAR2,
 table_out OUT VARCHAR2)
AS
 Cur0 ref_cursor_pack1.rcursor;
BEGIN
 OPEN Cur0 for
 SELECT table_name
 FROM syspublic.user_tables
 WHERE table_name >= table_in order by 1;
 LOOP
 FETCH Cur0 INTO table_out;
 EXIT WHEN (Cur0%FOUND or SQL%NOTFOUND);
 END LOOP;
 CLOSE Cur0;
64 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 RETURN;
END;
/

Weakly typed cursors
Weakly typed cursors are not bound to a particular result set or type. If you need
a weakly typed cursor, use the SYS_REFCURSOR type. DB2 supports weakly
typed cursors.

You can use weakly typed cursors when the definition of the result set is created
dynamically or at run time. Weakly typed cursors have limited or no type
checking; therefore, their row structures are discovered only at run time by
applications. This limited checking is often used to flow cursors around or to pass
cursors back and forth as parameters between procedures and functions.
Weakly typed cursor variables are ideal for holding different cursor types at
different points of time. For example, a procedure can be a “cursor factory” and
can return different cursor types in to the same OUT parameter based on various
values or logic, such as a CASE statement.

Example 2-47 shows a procedure using a weakly typed cursor.

Example 2-47 Using a weakly typed cursor

CREATE OR REPLACE PROCEDURE cursor_factory (
 action IN INTEGER,
 curs OUT sys_refcursor
)
AS
BEGIN
 IF action=1 THEN
 OPEN curs FOR SELECT * FROM dept;
 ELSIF action=2 THEN
 OPEN curs FOR SELECT * FROM emp;
 ELSE
 NULL;
 END IF;
END;
/

DECLARE
 v_ref_cur SYS_REFCURSOR;
 r_dept dept%ROWTYPE;
 r_emp emp%ROWTYPE;
BEGIN
 cursor_factory(1, v_ref_cur);
 Chapter 2. Language compatibility features 65

 LOOP
 FETCH v_ref_cur INTO r_dept;
 EXIT WHEN v_ref_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_dept.deptname);
 END LOOP;
 CLOSE v_ref_cur;
END;
/

Strongly typed cursors
Strongly typed cursors are cursors with a RETURN clause that define the number
of columns and the types that the cursor returns. These cursor data types are
called strongly typed, because when result set values are assigned to them, the
data types of the result sets can be checked. Strongly typed cursors are used
when the result set definition can be defined statically by a row, a record
description, or an SQL SELECT statement. These types of cursors are used mainly
for static business logic.

Strongly typed cursors are advantageous because their structures and result
sets type can be verified or checked by the compilation process or at assignment
times. Errors are raised when data types or row mismatches occur. A strongly
typed cursor of one type cannot be assigned to a cursor variable of another type.

Example 2-47 on page 65 cannot use a strongly typed cursor because the
strongly typed cursor by definition is tied only to single table or view. In
Example 2-48, the reference cursor is anchored to the entire EMPLOYEE table,
and it retrieves all the columns from that table.

Example 2-48 Using a strongly typed cursor

CREATE OR REPLACE PACKAGE cursor_package
IS
 TYPE scursor IS REF CURSOR RETURN employee%ROWTYPE;
END;
/

CREATE OR REPLACE PROCEDURE strongcursor (name_var IN VARCHAR2, curs
IN OUT cursor_package.scursor)
AS
emp_rows employee%ROWTYPE;
BEGIN
 OPEN curs FOR
 SELECT *
 FROM employee
 WHERE lastname >= name_var
66 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 ORDER BY lastname;
 FETCH curs INTO emp_rows;
 DBMS_OUTPUT.PUT_LINE(emp_rows.lastname ||', '|| emp_rows.firstnme);
 CLOSE curs;
END;
/

Implicit cursors
Implicit cursors are cursors that are automatically declared, opened, and closed
by certain PL/SQL constructs, such as a cursor declared in the FOR LOOP
structure, or for a single row fetch of an SQL SELECT INTO statement.

Example 2-49 demonstrates a usage of the implicit cursor. It does not include an
explicit cursor declaration.

Example 2-49 Using an implicit cursor

DECLARE
BEGIN
 FOR rec IN (SELECT lastname, firstnme
 FROM employee ORDER BY lastname)
 LOOP
 DBMS_OUTPUT.PUT_LINE(rec.lastname ||', '||rec.firstnme);
 END LOOP;
END;
/

Parameterized cursors
Parameterized cursors are strongly typed cursors where the parameters are
associated with the cursor in the definition, as shown in Example 2-50. DB2
requires that you specify the length of the parameter in the parameterized cursor,
name0 VARCHAR2(30).

Example 2-50 Using a parameterized cursor

CREATE OR REPLACE PROCEDURE param_cursor(table_in IN VARCHAR2,
table_out OUT VARCHAR2)
AS
 CURSOR Cur0 (name0 VARCHAR2(30)) IS
 SELECT table_name
 FROM syspublic.user_tables
 WHERE table_name >= name0 order by 1;
BEGIN
 OPEN Cur0(table_in);
 Chapter 2. Language compatibility features 67

 FETCH Cur0 INTO table_out;
 CLOSE Cur0;
 RETURN;
END;
/

Static cursors
Static cursors are cursors that are associated with one query that is known at
compile time. Example 2-51 modifies the parameterized cursor example
(Example 2-50 on page 67) to illustrate the static cursor.

Example 2-51 Using a static cursor

CREATE OR REPLACE PROCEDURE static_cursor(table_in in varchar2,
table_out out varchar2)
AS
 CURSOR Cur0 IS
 SELECT table_name
 FROM syspublic.user_tables
 WHERE table_name >= table_in order by 1;
BEGIN
 OPEN Cur0;
 FETCH Cur0 INTO table_out;
 CLOSE Cur0;
 RETURN;
END;
/

A word about cursor usage in OLTP environments
An OLTP environment workload profile usually implies many small-size
transactions in a short period (high workload fragmentation). This workload also
implies that the database server must handle a high number of connections that
run diverse SQL statements, each handling a relatively small amount of data.

For these types of environments (or workloads), each byte of memory in the
database server counts, even if those machines usually have hundreds of
gigabytes of dynamic memory. This state or process is because of the large
number of connections and high rate of transactions per second required to be
handled by the server.

In these types of cases, returning a cursor to the application layer (outside of the
database) poses special performance challenges. The developer must evaluate
the long-term impact of using the cursor pattern in a production environment.
68 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Avoid returning cursor variables to the application layer or, if that is not possible,
use insensitive or forward only cursor types. The application code must read the
full amount of data from the cursors and close (release the server-side
resources) as soon as possible. This development pattern can provide much
better throughput and overall application performance. Also, if more than one
cursor is returned by the SQL statement, wrapping all the data using XML
publishing or deep-nested objects (a combination of rows and arrays) in one
single entity can improve the overall throughput with the database server. This
case is specific to applications that retrieve the full data model of a complex entity
(such as a customer profile) and then work with it in the application
server memory.

You want to avoid the worst case scenario where the application layer opens a
cursor for update and keeps the cursor open for an undetermined amount of
time. This pattern might work well in non-OLTP environments, but in an OLTP
environment, it can lead to low performance and locking issues.

2.1.8 Static and dynamic SQL support

PL/SQL supports both static and dynamic SQL execution. A static SQL
statement is compiled once and then stored in the database for future runtime
execution. Dynamic SQL is compiled at run time unless the compiled package
happens to be cached in memory when the SQL is started.

The DB2 compatibility feature for PL/SQL allows both static and dynamic SQL.
The static SQL statements that are supported can be in data definition language
(DDL), data manipulation language (DML), or a transaction control (COMMIT
or ROLLBACK).

Using the EXECUTE IMMEDIATE statement
The EXECUTE IMMEDIATE statement is the primary mechanism for running a
dynamic statement. With this statement, SQL statements are not fully defined
until run time. In addition, specific static DDL SQLs cannot be run otherwise. The
EXECUTE IMMEDIATE statement can also run a PL/SQL block.

It is sometimes convenient to execute DDL statements from within PL/SQL.
Example 2-52 shows how to use the EXECUTE IMMEDIATE statement to make
dynamic changes to an existing table.

Example 2-52 The EXECUTE IMMEDIATE statement

CREATE TABLE empltest (empid VARCHAR2(6), emplastname VARCHAR2(30),
empfirstname VARCHAR2(30))
/
CREATE OR REPLACE PROCEDURE alter_table IS
 Chapter 2. Language compatibility features 69

BEGIN
EXECUTE IMMEDIATE 'ALTER TABLE empltest RENAME COLUMN empid TO

emp_id ';
EXECUTE IMMEDIATE 'ALTER TABLE empltest ALTER COLUMN emp_id SET DATA

TYPE INT';
END;
/

When you manipulate data within a database server, it is usually better to use
statically compiled code. In this case, the database compiles, verifies, and
optimizes the SQL statements immediately.

Example 2-53 shows a simple procedure with a few static SQL statements for
manipulating data.

Example 2-53 Data manipulation

CREATE OR REPLACE PROCEDURE add_emp1 IS
BEGIN
 INSERT INTO empltest VALUES('111111', 'X', 'Y');
 INSERT INTO empltest VALUES('222222', 'X', 'Y');
 UPDATE empltest SET empid=999999 where empid=111111;
 DELETE empltest WHERE empid='222222';
END;
/

In this case, using the EXECUTE IMMEDIATE statement (Example 2-54) to achieve
the same purpose provides no advantage. In addition, if a syntax error is present
in one of these EXECUTE IMMEDIATE statements, it is discovered at their run time,
which is too late, instead of being caught at compilation time, which is early in the
development process.

Example 2-54 EXECUTE IMMEDIATE is not required

CREATE OR REPLACE PROCEDURE add_emp2 IS
BEGIN
 EXECUTE IMMEDIATE 'insert into empltest values(''111111'', ''X'',
''Y'')';
 EXECUTE IMMEDIATE 'insert into empltest values(''222222'', ''X'',
''Y'')';
 EXECUTE IMMEDIATE 'update empltest set empid=''999999''
 where empid=''111111''';
 EXECUTE IMMEDIATE 'delete empltest where empid=''222222''';
END;
/

70 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Alternatively, the EXECUTE IMMEDIATE statement is often used to run a DML that is
constructed, as shown in Example 2-55. It also demonstrates how variables can
be passed between procedures.

Example 2-55 A common usage of EXECUTE IMMEDIATE

CREATE OR REPLACE PROCEDURE add_emp3 IS
 v_var1 VARCHAR2(6);
 v_var2 VARCHAR2(30);
 v_var3 VARCHAR2(30);
 v_var4 VARCHAR2(30);
 v_str VARCHAR2(300);
BEGIN
 v_var1 := '111111';
 v_var2 := 'L1';
 v_var3 := 'F1';
 v_var4 := '999999';
 v_str := 'insert into empltest values(' || '''' ||v_var1 || ''''||
','
 || '''' || v_var2 || '''' || ',' || '''' || v_var3 || '''' ||
')';

EXECUTE IMMEDIATE v_str;
EXECUTE IMMEDIATE 'update empltest set empid=' || '''' || v_var4 ||
'''' || '
 where empid=' || '''' || v_var1 || '''';
EXECUTE IMMEDIATE 'delete empltest where empid='|| '''' || v_var4 ||
'''';
END;
/

Example 2-56 shows an equivalent form of Example 2-55.

Example 2-56 A common usage of EXECUTE IMMEDIATE

CREATE OR REPLACE PROCEDURE add_emp4 IS
 v_var1 VARCHAR2(6);
 v_var2 VARCHAR2(30);
 v_var3 VARCHAR2(30);
 v_var4 VARCHAR2(30);
BEGIN
 v_var1 := '111111';
 v_var2 := 'L1';
 v_var3 := 'F1';
 v_var4 := '999999';
 Chapter 2. Language compatibility features 71

EXECUTE IMMEDIATE 'insert into empltest values(:1, :2, :3)'
 using v_var1, v_var2, v_var3;
EXECUTE IMMEDIATE 'update empltest set empid=:1
 where empid=:2' using v_var4, v_var1;
EXECUTE IMMEDIATE 'delete empltest where empid=:1' using v_var4;
END;
/

Example 2-57 shows another dynamic SQL execution where the SQL statement
is constructed dynamically and run using EXECUTE IMMEDIATE.

Example 2-57 Using EXECUTE IMMEDIATE

CREATE OR REPLACE PROCEDURE del_emp1(name VARCHAR2, where clause
VARCHAR2)
IS
 str varchar2(30);
BEGIN
 str := 'delete '|| name || ' ' || whereclause ;
 EXECUTE IMMEDIATE str;
END;
/

EXECUTE IMMEDIATE can also run a PL/SQL block, in addition to the dynamic or
static SQL statements. In this case, we must ensure that a complete block is
specified. An anonymous block example that shows the execution of a CALL
statement that is wrapped in a block is shown in Example 2-58.

Example 2-58 Using EXECUTE IMMEDIATE to execute PL/SQL block

DECLARE

id VARCHAR2(6);
LName VARCHAR2(6);
FName VARCHAR2(6);

BEGIN
 EXECUTE IMMEDIATE 'BEGIN add_emp3; END' ;
 --- if the procedure has arguments, use the following syntax
 --- EXECUTE IMMEDIATE 'BEGIN add_emp3(:1, :2 ,:3); END'
 --- using id, LName, FName;
END;
/

72 Oracle to DB2 Conversion Guide: Compatibility Made Easy

In DB2, the EXECUTE IMMEDIATE statement does not currently support SELECT
INTO or VALUES for retrieving data. You can use a cursor operation to achieve the
direct equivalent.

The EXECUTE IMMEDIATE statement usage patterns
The EXECUTE IMMEDIATE statement is useful for cases when the algorithm of the
data processing is not known at the time the code was built. Using it as a way to
save some of the developer’s time in OLTP or cases when the logic is then used
by other logic (computer to computer call) is usually not justified.

You can use the EXECUTE IMMEDIATE statement for cases when parts of the actual
statement or statements are not known until run time. Limit those cases to a
minimum for better performance and security levels.

The performance can be impacted in different ways. For example, the added
compile and optimization time adds to the performance impact. In addition, if you
have a DDL statement that drops and re-creates tables that are then filled with
data (staging tables, for example), you must also run the statistic collection on
those tables and rebind the dependent statements. The worst case scenario is
when those tables have no statistics or the statistics are captured when the new
table is empty.

Security of the application can also be impacted by allowing the user to inject
(untested) code at run time.

2.1.9 Support for built-in scalar functions

DB2 provides built-in functions that increase the compatibility of applications that
were originally written for Oracle. In general, functions can be classified by the
actions they perform, such as character and string functions, conversion
functions, error functions, and table functions.

Character and string functions
The following character and string functions primarily deal with manipulation and
processing of strings to produce a modified output that is based on the specific
action that is performed on the input string:

� ASCII
� CHR, CHAR
� CONCAT
� CONCAT with ||
� INITCAP
� INSTR
� INSTRB
 Chapter 2. Language compatibility features 73

� LENGTH
� LOWER
� LPAD
� LTRIM
� REPLACE
� RPAD
� TO_SINGLE_BYTE
� RTRIM
� SOUNDEX
� SUBSTR
� SUBSTR4
� TRANSLATE
� TRIM
� UPPER

Conversion functions
DB2 extends the TO_CHAR, TO_NUMBER, TO_DATE, and TO_TIMESTAMP conversion
functions. These functions are identical to their respective Oracle functions,
except for the support of the NLS parameter.

The following conversion functions are supported in DB2:

� CAST
� CONVERT
� TO_CHAR
� TO_DATE
� TO_TIMESTAMP
� TO_CLOB
� TO_NUMBER

Date calculation functions
The date calculation functions manipulate the date and time. TO_DATE and
TO_CHAR (especially useful for date manipulations) are also listed under
conversion functions. The following functions are the most widely used data
manipulation functions:

� ADD_MONTHS
� CURRENT_DATE
� CURRENT_TIMESTAMP
� LAST_DAY
� TIMESTAMPDIFF
� LOCALTIMESTAMP
� MONTHS_BETWEEN
� NEXT_DAY
� ROUND (date)
74 Oracle to DB2 Conversion Guide: Compatibility Made Easy

� SYSDATE
� TO_CHAR
� TO_DATE
� TRUNC (date)

Time zone functions
Oracle supports several functions that provide time zone information. In DB2, you
can implement this function with custom functions that use the DB2 Timestamp
data type. The next examples demonstrate how to use the DB2 date scalar
functions to obtain the same output.

Example 2-59 shows how to implement the Oracle FROM_TZ function in DB2 to
provide time zone information.

Example 2-59 From_TZ implementation in DB2

CREATE OR REPLACE FUNCTION from_tz_db2(ts TIMESTAMP, tz VARCHAR2)
 RETURN VARCHAR2(39)
IS
 am_pm VARCHAR2(10);
 tz1 VARCHAR2(10);
 tz2 VARCHAR2(10);
 indplus NUMBER;
 indminus NUMBER;
 colind NUMBER;
 syntax_function EXCEPTION;
BEGIN
 indminus := LOCATE('-', tz);
 indplus := LOCATE('+', tz);
 colind := LOCATE(':', tz);
 IF (colind = 0) THEN
 raise syntax_function;
 END IF;
 IF (colind = 2) THEN
 BEGIN
 IF (indplus = 0) OR (indminus = 0) THEN
 tz1 := '+0'||tz;
 END IF;
 END;
 ELSIF (colind = 3) THEN
 BEGIN
 IF (indminus = 0) AND (indplus = 0) THEN
 tz1 := '+'||tz;
 ELSIF (indplus != 0) THEN
 tz1 := '+0'||substr(tz,2, length(tz)-1);
 Chapter 2. Language compatibility features 75

 ELSE -- negative
 tz1 := '-0'||substr(tz,2, length(tz)-1);
 END IF;
 END;
 ELSIF (colind = 4) THEN
 BEGIN
 IF (indminus != 0) OR (indplus != 0) THEN
 tz1 := tz;
 END IF;
 END;
 ELSE
 RAISE syntax_function;
 END IF;

 IF (length(tz1) = 5) AND (locate(':', tz1) = 4) THEN
 tz2 := tz1||'0';
 ELSIF (length(tz1) = 4) AND (locate(':', tz1) = 4) THEN
 tz2 := tz1||'00';
 ELSE
 tz2 := tz1;
 END IF;
 am_pm := CASE WHEN (hour(ts) <= 12) THEN ' AM ' ELSE ' PM ' END;
 RETURN CAST(ts AS TIMESTAMP(9)) || am_pm || tz2;
 EXCEPTION
 WHEN syntax_function THEN
 RAISE_APPLICATION_ERROR(-20001, 'incorrect syntax format for '||tz);
END;
/

Example 2-60 shows a simple implementation for Oracle TZ_OFFSET function that
returns the zone offset for a time zone. The exception checking is not included for
simplicity. Also, not all the zones are shown, because there are more than 400
zones.

Example 2-60 TZ_OFFSET implementation

CREATE OR REPLACE FUNCTION tz_offset_db2(zone VARCHAR2)
 RETURN VARCHAR2(6)
IS
 offset VARCHAR2(6);
BEGIN
 offset := CASE
 WHEN zone = 'Africa/Johannesburg' THEN '+02:00'
 WHEN zone = 'Africa/Khartoum' THEN '+02:00'
 WHEN zone = 'Africa/Mogadishu' THEN '+03:00'
76 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 WHEN zone = 'Africa/Nairobi' THEN '+03:00'
 WHEN zone = 'Africa/Nouakchott' THEN '+00:00'
 WHEN zone = 'Africa/Tripoli' THEN '+02:00'
 WHEN zone = 'Africa/Tunis' THEN '+01:00'
 WHEN zone = 'Africa/Windhoek' THEN '+01:00'
 WHEN zone = 'America/Adak' THEN '-09:00'
 WHEN zone = 'America/Anchorage' THEN '-08:00'
 WHEN zone = 'America/Anguilla' THEN '-04:00'
 WHEN zone = 'America/Araguaina' THEN '-03:00'
 WHEN zone = 'America/Aruba' THEN '-04:00'

 WHEN zone = '+00:00' THEN '+00:00'
 WHEN zone = '+01:00' THEN '+01:00'
 WHEN zone = '+02:00' THEN '+02:00'
 WHEN zone = '+03:00' THEN '+03:00'

 ELSE
 '+99:99'
 END;

RETURN offset;

END;
/

From TZ_OFFSET_ZONE, you can develop a DB2 version of the NEW_TIME scalar
function, which takes a time in one time zone and converts it to a time in another
time zone, for example, NEW_TIME (time, zone1, zone2). This function returns
the correct output only if the database is in Oracle compatibility mode.

Example 2-61 shows a simple implementation (assuming that you use the
correct inputs).

Example 2-61 NEW_TIME implementation

CREATE OR REPLACE FUNCTION new_time_db2(date1 DATE, zone1 VARCHAR, zone2 varChar)
 RETURN DATE
IS

 offset1 NUMBER;
 offset2 NUMBER;

BEGIN

 offset1 := CASE
 WHEN zone1 = 'AST' THEN -4
 Chapter 2. Language compatibility features 77

 WHEN zone1 = 'ADT' THEN -3
 WHEN zone1 = 'BST' THEN -11
 WHEN zone1 = 'BDT' THEN -10
 WHEN zone1 = 'CST' THEN -6
 WHEN zone1 = 'CDT' THEN -5
 WHEN zone1 = 'EST' THEN -5
 WHEN zone1 = 'EDT' THEN -4
 WHEN zone1 = 'GMT' THEN 0
 WHEN zone1 = 'HST' THEN -10
 WHEN zone1 = 'HDT' THEN -9
 WHEN zone1 = 'MST' THEN -7
 WHEN zone1 = 'MDT' THEN -6
 WHEN zone1 = 'NST' THEN -3.5
 WHEN zone1 = 'PST' THEN -8
 WHEN zone1 = 'PDT' THEN -7
 WHEN zone1 = 'YST' THEN -9
 WHEN zone1 = 'YDT' THEN -8
 ELSE
 99
 END;

 offset2 := CASE
 WHEN zone2 = 'AST' THEN -4
 WHEN zone2 = 'ADT' THEN -3
 WHEN zone2 = 'BST' THEN -11
 WHEN zone2 = 'BDT' THEN -10
 WHEN zone2 = 'CST' THEN -6
 WHEN zone2 = 'CDT' THEN -5
 WHEN zone2 = 'EST' THEN -5
 WHEN zone2 = 'EDT' THEN -4
 WHEN zone2 = 'GMT' THEN 0
 WHEN zone2 = 'HST' THEN -10
 WHEN zone2 = 'HDT' THEN -9
 WHEN zone2 = 'MST' THEN -7
 WHEN zone2 = 'MDT' THEN -6
 WHEN zone2 = 'NST' THEN -3.5
 WHEN zone2 = 'PST' THEN -8
 WHEN zone2 = 'PDT' THEN -7
 WHEN zone2 = 'YST' THEN -9
 WHEN zone2 = 'YDT' THEN -8
 ELSE
 99
 END;

 RETURN date1 + (offset2 - offset1)/24;
END;
/

78 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Oracle interval functions that use Interval Year To Date and Interval Day To
Second data types could be implemented in DB2 by using the DB2 timestamp
data type, which components are considered as intervals, not a point in time. A
group of DB2 scalar functions, such as YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
and MICROSECOND, could be employed to manipulate the data. These functions
have no equivalent in Oracle.

For more examples, see Oracle to DB2 Conversion Guide for Linux, UNIX, and
Windows, SG24-7048.

Mathematical functions
DB2 also provides the following set of mathematical functions:

� ABS
� ACOS
� ASIN
� ATAN
� ATAN2
� AVG
� BITAND
� BITANDNOT
� BITOR
� BITXOR
� CEIL
� COS
� COSH
� COUNT
� DENSE_RANK
� EXP
� EXTRACT
� FLOOR
� GREATEST
� LEAST
� MAX
� MIN
� MOD
� LN
� POWER
� RANK
� ROUND (numbers)
� SIGN
� SIN
� SINH
� STDDEV
� SUM
 Chapter 2. Language compatibility features 79

� TAN
� SQRT
� TANH
� TRUNC (numbers)
� VAR_POP
� VAR_SAMP
� VARIANCE

Error functions
The SQLCODE and SQLERRM error functions raise exception or retrieve error codes.
These functions can be used only in the EXCEPTION section of PL/SQL blocks.

SQLCODE
The SQLCODE function returns the SQLCODE value that is associated with the raised
exception. Example 2-62 shows a usage of the SQLCODE function.

Example 2-62 SQLCODE function

EXCEPTION WHEN OTHERS THEN
 raise_application_error(-20001,'SQLCODE is ' || SQLCODE);
END;

SQLERRM
The SQLERRM function returns the error message that is associated with the raised
exception. Example 2-63 shows a usage of the SQLERRM function.

Example 2-63 SQLERRM function

EXCEPTION WHEN OTHERS THEN
 raise_application_error(-20001,'SQLERRM is '||SQLERRM);
END;

Miscellaneous functions
Oracle offers some specific functions that are not available on other database
platforms. To ensure a seamless transition from Oracle to DB2, DB2 provides
support for the following Oracle functions:

� CARDINALITY
� COALESCE
� CURRENT_USER
� DECODE
� LAG
� LEAD
80 Oracle to DB2 Conversion Guide: Compatibility Made Easy

� NULLIF
� NVL

The following examples illustrate the DECODE and NVL functions for reference to
show that there is no difference in how these functions operate on DB2 and
Oracle. The examples also demonstrate how to implement the USERENV function
in DB2.

DECODE
DB2 supports the DECODE function in the same way Oracle does, which is also
similar to the CASE statement. In Example 2-64, the query selects the number of
current projects per employee and displays a conditional message that is based
on this number.

Example 2-64 DECODE function

SELECT emp_id, last_name, current_projects,
 DECODE(current_projects,
 0, 'Attention - No projects',
 1, 'Attention - Single project',
 2, 'Attention - Need to assign projects',
 3, 'Good job - Working on 3 projects',
 4, 'Great job - Working on 4 projects',
 5, 'Excellent - Do not assign more projects',
 NULL, 'Verify project assignments',
 'Error with project assignments')
 FROM employees
 ORDER BY current_projects;

Example 2-65 demonstrates part of the result set that is returned by the query
in DECODE.

Example 2-65 DECODE query output

29 PARKER 0 Attention - No projects
 3 KWAN 1 Attention - Single project
 7 PULASKI 1 Attention - Single project
 2 THOMPSON 2 Attention - Need to assign projects
 5 GEYER 2 Attention - Need to assign projects
 9 HENDERSON 3 Good job - Working on 3 projects
18 SCOUTTEN 3 Good job - Working on 3 projects
14 NICHOLLS 4 Great job - Working on 4 projects
 1 HAAS 5 Excellent - Do not assign more projects
19 WALKER 5 Excellent - Do not assign more projects
 Chapter 2. Language compatibility features 81

NVL
In a similar fashion to the DECODE function, the NVL function handles
conditional NULL values and is fully supported in DB2. The query in
Example 2-66 returns a specific message when department information is not
yet assigned to the employee.

Example 2-66 Query with NVL function

SELECT e.emp_id, e.first_name, e.last_name, e.dept_code,
NVL(d.dept_name, 'Unassigned or unknown Department') as department
FROM
 employees e,
 departments d
WHERE
 e.dept_code =d.dept_code (+)
 and emp_id between 30 and 35
ORDER BY department DESC, emp_id asc;

Example 2-67 presents the output of this query. Note the department description
for the NEW department code.

Example 2-67 Output of query with NVL function

31 MAUDE SETRIGHT NEW Unassigned or unknown Department
34 JASON GOUNOT NEW Unassigned or unknown Department
32 RAMLAL MEHTA E21 SUPPORT SERVICES
33 WING LEE E21 SUPPORT SERVICES
30 PHILIP SMITH E11 SPIFFY COMPUTER SERVICE DIV

Today, there is a wide range of scalar functions that are used in the database
industry, and each RDBMS provides specific functions that are designed to
satisfy the requirements of their users. New functions are released by the
database vendors with every new release.

For any function that is not provided in DB2, you can develop a corresponding
DB2 equivalent using either PL/SQL or SQL PL language. In Oracle, a raw type
stores character data and is byte-oriented. In DB2, the equivalent type for raw
type is VARCHAR FOR BIT DATA.

Example 2-68 shows an example of RawToHex implementation in DB2.

Example 2-68 RawToHex implementation

CREATE OR REPLACE FUNCTION RAW2HEX
 (x1 VARCHAR(100) FOR BIT DATA)
82 Oracle to DB2 Conversion Guide: Compatibility Made Easy

RETURNS VARCHAR2(100)
SOURCE HEX(VARCHAR(100) FOR BIT DATA)

USERENV
The USERENV function is specific to Oracle. You can use it to retrieve information
about the current Oracle session. The function accepts several different input
parameters, as listed in Table 2-6.

Table 2-6 Parameters that could be passed to the USERENV function

To enforce the language statement, Example 2-69 shows how to implement the
USERENV function in DB2 in both DB2 SQL PL and PL/SQL styles. Both functions
return the same result set. Depending on the value of the input parameter, the
function returns specific information for the current session identifier. In the
example, only a few parameters are used.

Example 2-69 USERENV function

--SQL PL style:
--
CREATE OR REPLACE FUNCTION userenv(p VARCHAR(250))
 RETURNS VARCHAR(128)
 DETERMINISTIC
 RETURN (CASE upper(p)
 WHEN 'SCHEMAID' then current schema
 WHEN 'CURRENT_USER' then current user
 WHEN 'SESSIONID' then APPLICATION_ID()
 ELSE 'other_user_info'
 END) ;

Parameter Returned value

CLIENT_INFO The user session information that is inserted using the
DEMS_APPLICATION_INFO package.

ENTRYID Current session ID for auditing session

SESSIONID Current session ID

INSTANCE Oracle instance ID

ISDBA TRUE or FALSE depending on whether the user is granted
DBA privileges

LANG The ISO abbreviation for the language

LANGUAGE The language, territory, and character set of the current session

TERMINAL The operating system ID of the current session
 Chapter 2. Language compatibility features 83

--
-- PL/SQL style:
--
CREATE OR REPLACE FUNCTION userenv(p VARCHAR2)
 RETURN VARCHAR2 IS
 v_str VARCHAR2(128);
 v_app_id VARCHAR2(50);
 BEGIN
 V_str:=(case upper(p)
 WHEN 'SCHEMAID' then current schema
 WHEN 'CURRENT_USER' then current user
 WHEN 'SESSIONID' then APPLICATION_ID()
 else 'other_user_info'
 END);
 RETURN v_str;
END;

2.1.10 Routines, procedures, and functions compatibility

PL/SQL procedures and functions are named blocks that persist in the database
through the CREATE PROCEDURE or CREATE FUNCTION statements. Both a procedure
and function contain executable statements, but differ in certain characteristics.
The procedure takes zero or more inputs/outputs and might not return a value,
but a function takes zero or more inputs/outputs and always returns an output
value. During run time, the procedure is started as a PL/SQL statement from the
command line, another procedure, or function, trigger, or anonymous block. A
function is always started as part of an expression, in an SQL, or an assignment
statement, where the contexts are valid in the command line, another procedure,
or function, trigger, or anonymous block.

DB2 also provides support for anonymous blocks, that is, unnamed PL/SQL
blocks that are not stored persistently in the database catalog.

Anonymous blocks
Anonymous blocks are PL/SQL constructs that contain unnamed blocks of code,
which are not stored persistently in the database, but are primarily intended for a
single time execution. Unlike named blocks, which are persistently stored in the
database, the compilation and execution of an anonymous block are combined in
one step, which offers the flexibility to make immediate changes and execute
them in the same time. For comparison, a stored procedure must be recompiled
in a separate step every time its definition changes.
84 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Anonymous blocks are often used to test, troubleshoot, and develop stored
procedures, simulate application runs, and build complex, ad hoc queries. During
the execution of anonymous blocks, if an exception occurs and is caught, the
transaction control can be handled in the exception section. If the exception is
not caught, all statements before the exception are rolled back to the previous
commit point.

Many examples throughout the book illustrate the use of anonymous blocks.
Example 2-70 shows a simple anonymous block to illustrate the basic construct.

Example 2-70 Simple anonymous block

DECLARE
 current_date DATE := SYSDATE;
BEGIN
 DBMS_OUTPUT.PUT_LINE(current_date);
END;
/

For more information about anonymous blocks, see the developerWorks topic
DB2 9.7: Using PL/SQL anonymous blocks in DB2 9.7, which is available at:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0908anony
mousblocks/index.html

You can also refer to the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.apdv.plsql.doc/doc/c0053848.html

Procedures compatibility
DB2 PL/SQL supports a wide range of Oracle PL/SQL features, syntactically and
semantically. Within this compatible context, an Oracle PL/SQL procedure can be
compiled and started directly on DB2.

Example 2-71 shows a PL/SQL procedure. With DB2 PL/SQL support, you can
directly compile and run this procedure in DB2 without any modification.

Example 2-71 PL/SQL procedure

CREATE OR REPLACE PROCEDURE ADD_NEW_EMPLOYEE (
 p_FirstName EMPLOYEES.first_name%TYPE,
 p_LastName EMPLOYEES.last_name%TYPE,
 p_EmpMgrId EMPLOYEES.emp_mgr_id%TYPE,
 p_DeptCode EMPLOYEES.dept_code%TYPE,
 p_Account EMPLOYEES.acct_id%TYPE,
 p_CreateDate EMPLOYEES.create_date%TYPE DEFAULT SYSDATE,
 Chapter 2. Language compatibility features 85

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.plsql.doc/doc/c0053848.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0908anonymousblocks/index.html

 p_OfficeId EMPLOYEES.office_id%TYPE DEFAULT 2
) AS

-- variable and cursor declaration
v_EmployeeId EMPLOYEES.emp_id%TYPE :=1;
v_EmployeeIdTemp EMPLOYEES.emp_id%TYPE;
CURSOR c_CheckEmployeeId IS SELECT 1 FROM EMPLOYEES WHERE emp_id=v_EmployeeId;

BEGIN
 -- Find Next available employee id from the employee sequence
 LOOP
 SELECT employee_sequence.NEXTVAL INTO v_EmployeeId FROM DUAL;
 OPEN c_CheckEmployeeId;
 FETCH c_CheckEmployeeId INTO v_EmployeeIdTemp;
 EXIT WHEN c_CheckEmployeeId%NOTFOUND;
 END LOOP;

 CLOSE c_CheckEmployeeId;
 SELECT employee_sequence.CURRVAL INTO v_EmployeeId FROM DUAL;
 INSERT INTO EMPLOYEES(emp_id, first_name, last_name, current_projects,
 emp_mgr_id, dept_code, acct_id, office_id, band,
 create_date)
 VALUES (v_EmployeeId , INTICAP(p_FirstName), INITCAP(p_LastName), 0,
 p_EmpMgrId ,p_DeptCode, p_Account, p_OfficeId, 1, p_CreateDate;

 DBMS_OUTPUT.PUT_LINE('Employee record id ' || v_EmployeeId ||
 ' was created successfully.');
 EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('Employee record was not created.');
 RAISE;
END ADD_NEW_EMPLOYEE;
/

The DB2 implementation of PL/SQL covers the most commonly used language
elements. Many applications can move to DB2 with no code changes at all, but it
is not uncommon for a database migration to require a small number of changes.
For those few unavailable language elements you encounter, the PL/SQL code
requires modification to provide the equivalent results in DB2.

Before DB2 10, nested routines (functions) should be implemented in DB2 as
stand-alone database objects or inside PL/SQL packages. DB2 10 allows for
local procedure definitions just as they are defined in Oracle.
86 Oracle to DB2 Conversion Guide: Compatibility Made Easy

In Example 2-72, the nestedproc1 procedure contains the declaration of another
procedure and one function.

Example 2-72 Oracle nested procedure

CREATE OR REPLACE PROCEDURE nestedproc1 (p_arg1 IN VARCHAR2, p_arg2 OUT
VARCHAR2)
IS

var1 VARCHAR2(30);

PROCEDURE localProc1(p_arg3 IN VARCHAR2, p_arg3o OUT VARCHAR2)
IS
BEGIN

p_arg3o := ' ' ||p_arg3;
END;

FUNCTION localFunc2(p_arg4 IN VARCHAR2) RETURN VARCHAR2
IS
BEGIN

return INITCAP(p_arg4);
END;

BEGIN
 localProc1(p_arg1, var1);
 p_arg2 := localFunc2(p_arg1||var1);
END;
/

Example 2-73 illustrates how you implement the nested routines from
Example 2-72 in a PL/SQL package in a way that works on both DB2 and Oracle.
localProc1 is allowed as local procedure (new in DB2 10) and localFunc2 is
defined inside the package body, which makes it private to the package and
makes these procedures correspond to the way they were nested in nestedproc1
in Example 2-72.

Example 2-73 DB2 nested procedure

CREATE OR REPLACE PACKAGE nestedpack1
IS

FUNCTION localFunc2(p_arg4 IN VARCHAR2) RETURN VARCHAR2;
PROCEDURE nestedproc1(p_arg1 IN VARCHAR2, p_arg2 OUT VARCHAR2);

END nestedpack1;
/

CREATE OR REPLACE PACKAGE BODY nestedpack1
IS
 Chapter 2. Language compatibility features 87

FUNCTION localFunc2(p_arg4 IN VARCHAR2) RETURN VARCHAR2
 IS

BEGIN
return INITCAP(p_arg4);

END;

PROCEDURE nestedproc1(p_arg1 IN VARCHAR2, p_arg2 OUT VARCHAR2)
IS

var1 VARCHAR2(30);

PROCEDURE localProc1(p_arg3 IN VARCHAR2, p_arg3o OUT VARCHAR2)
 IS
 BEGIN
 p_arg3o := ' ' ||p_arg3;
 END;

BEGIN
localProc1(p_arg1, var1);
p_arg2 := localFunc2(p_arg1||var1);

END;

END nestedpack1;
/

Functions compatibility
The building blocks for PL/SQL functions are similar to the PL/SQL procedures,
except, as noted earlier, regarding the returning value and the invocation
method. In general, the supported features for procedures are applied to
functions except for the autonomous transaction features. However, because
DB2 implementation details of procedures and functions are a bit different, in
some exceptional cases, a handful of constructs that work in procedures might
not be applicable to functions.

Recursion is a powerful technique in programming language. Just as Oracle
does, DB2 supports recursive SQL calls through mechanisms, such as the
CONNECT BY/PRIOR constructs or by using COMMON TABLE EXPRESSION, examples of
which are available in Hierarchical queries.

DB2 also supports recursion through function calls in PL/SQL, where a function
or a procedure calls itself with different arguments. A recursive function or
procedure should have the logical conditions to ensure that the routine does not
loop forever. DB2 recursion support in PL/SQL is semantically similar to slightly
syntax differences because of implementation differences.
88 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Example 2-74 shows a simple Oracle recursive function (REPORT_CHAIN) that
calls itself.

Example 2-74 Oracle recursive function

CREATE OR REPLACE FUNCTION report_chain(p_emp_id IN NUMBER) RETURN
VARCHAR2
AS
 p VARCHAR2(30);
 empmgrid NUMBER(10);
BEGIN

SELECT emp_mgr_id
 INTO empmgrid
 FROM employees
 WHERE emp_id = p_emp_id;

p := report_chain(empmgrid);

IF empmgrid is not NULL THEN
 RETURN '|'||empmgrid || '#' || p || '*';

END IF;

EXCEPTION WHEN OTHERS THEN RETURN ' ';
END;
/

To implement recursive functions in DB2 and achieve the same result, you can
delay the dependency checking that is done between compile time and run time
by running the set_routine_opts() DB2 system procedure (Example 2-75). You
can obtain the same result by setting the AUTO_REVAL database registry
parameter to DEFERRED_FORCE. You can add a call to the
SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS administrative procedure to check the
invalid object count and error messages after the full database deployment is
finished. This call can catch any legitimate errors and fix them before you enable
the production environment.

Example 2-75 DB2 recursive function

call set_routine_opts(‘VALIDATE RUN’)
/
CREATE OR REPLACE FUNCTION report_chain(p_emp_id IN NUMBER) RETURN
VARCHAR2
AS
 p VARCHAR2(30);
 empmgrid NUMBER(10);

 Chapter 2. Language compatibility features 89

BEGIN

 SELECT emp_mgr_id
 INTO empmgrid
 FROM employees
 WHERE emp_id = p_emp_id;

 p := report_chain(empmgrid);

 IF empmgrid is not NULL THEN
 RETURN '|'||empmgrid || '#' || p || '*';

 END IF;

 EXCEPTION WHEN OTHERS THEN RETURN ' ';
END;
/
-- clear the registry variable or set a new option for the next
-- routine
call set_routine_opt(‘’)
/
-- expect and ignore this type of message...
DB21034E The command was processed as an SQL statement because it was
not a
valid Command Line Processor command. During SQL processing it
returned:
SQL20481N The creation or revalidation of object
"DB2INST1.REPORT_CHAIN"
would result in an invalid direct or indirect self-reference. LINE
NUMBER=32.
SQLSTATE=429C3

-- ... after all code is deployed, run the command below to revalidate
all objects
call SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS(NULL,NULL,NULL)
/
-- check the invalid object count
select count(1) from syscat.invalidobjects
/
-- which should be 0 !
90 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Pipelined table functions
The purpose of pipelined table functions is to incrementally produce a result set
for consumption on demand. A pipelined table function computes a table one row
at a time and can be referenced in the FROM clause of SELECT statements. To
enable this functionality, the PIPE statement was introduced. It enables
user-defined functions to become a pipelined table function. This statement can
be embedded in a compound SQL (compiled) statement of an SQL table
function. It is not an executable statement and cannot be dynamically prepared.

Example 2-76 shows how to set up a pipelined table function and how it can be
used by your application code.

Example 2-76 Pipelined table function

-- Create a type to hold the result set
CREATE TYPE datearray AS TABLE OF DATE;

-- Create the function as PIPELINED
CREATE FUNCTION dates(dt IN DATE) RETURN datearray PIPELINED AS
BEGIN

LOOP
PIPE ROW(dt);
dt := dt + 1;

END LOOP;
RETURN;

END;
/

-- Use the function in a FROM clause.
SELECT * FROM TABLE(dates('2013-01-01')) WHERE ROWNUM <= 2;

-- Results
COLUMN_VALUE
2013-01-01 00:00:00
2013-01-02 00:00:00

External routines
External procedures and functions that are written in Java and C/C++ are
frequently found in both Oracle and DB2 applications. We provide two examples
of building routines using C and Java. Although in most cases there are no
changes to the code, it is important to review the code and ensure that it is
compatible with parameter style handling in DB2.
 Chapter 2. Language compatibility features 91

For complete information about building and running external procedures and
functions, consult the following IBM DB2 documents:

� Getting Started with Database Application Development, SC10-4252
� Developing SQL and External Routines, SC10-4373

Building C/C++ routines
To create a stored procedure that is written in C, complete the following steps:

1. Create the external procedure or function and save it on your file system. If
the procedure or function contains embedded SQL, then it should be saved
with the extension .sqc; if not, save it with the extension .c.

2. Create the export file (AIX only).

AIX requires you to provide an export file that specifies which global functions
in the library are callable from outside it. This file must include the names of
all routines in the library. Other UNIX platforms export all global functions in
the library. Here is an example of an AIX export file for the outlanguage
procedure that exists in the file spserver.sqc:

#! spserver export file
outlanguage

The spserver.exp export file lists the outlanguage stored procedure. The
linker uses spserver.exp to create the shared library spserver that contains
the outlanguage stored procedure.

3. On Windows operating systems, a DEF file is required, which has a similar
purpose. See the sqllib/samples/c/spserver.def file for an example.

4. Run the bldrtn script, which creates the shared library:

bldrtn my_routine my_database_name

The script copies the shared library to the server in the sqllib/function path.

5. Catalog the routines by running the catalog_my_routine script on the server.

After a shared library is built, it is typically copied into a directory from which DB2
accesses it. When you attempt to replace a routine shared library, you should
either run /usr/sbin/slibclean to flush the AIX shared library cache, or remove
the library from the target directory and then copy the library from the source
directory to the target directory. Otherwise, the copy operation might fail because
AIX keeps a cache of referenced libraries and does not allow the library to
be overwritten.

DB2 provides build scripts for precompiling, compiling, and linking C stored
procedures. These scripts are in the sqllib/samples/c directory, along with
sample programs that can be built with these files. This directory also contains
the embprep script that is used within the build script to precompile a *.sqc file.
92 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The build scripts have the .bat (batch) extension on Windows, and have no
extension on UNIX platforms. For example, bldrtn.bat is a script to build C/C++
stored procedure on a Windows platform; bldrtn is the equivalent on UNIX.

The following procedure creates and catalogs a stored procedure that is written
in C. This procedure queries the SYSPROCEDURES table from the DB2 System
Catalog to determine in which language (Java, C, SQL, and so on) the
BONUS_INCREASE procedure is written.

1. Create and save the C source file (Example 2-77), with embedded SQL, as
outlanguage.sqc.

Example 2-77 Stored procedure in C

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlca.h>
#include <sqludf.h>
#include <sql.h>
#include <memory.h>
SQL_API_RC SQL_API_FN outlanguage(char language[9]){
 struct sqlca sqlca;
 EXEC SQL BEGIN DECLARE SECTION;
 char out_lang[9];
 EXEC SQL END DECLARE SECTION;
 /* Initialize strings used for output parameters to NULL */
 memset(language, '\0', 9);
 EXEC SQL SELECT language INTO :out_lang
 FROM sysibm.sysprocedures
 WHERE procname = 'BONUS_INCREASE';
 strcpy(language, out_lang);
 return 0;
} /* outlanguage function */

2. Create and save the .exp file as outlanguage.exp. Here are the contents of
that file:

outlanguage

3. Create and save the outlanguage_crt.db2 file, which catalogs the procedure.
Here are its contents:

CREATE PROCEDURE outlanguage (OUT language CHAR(8))
DYNAMIC RESULT SETS 0
LANGUAGE C
PARAMETER STYLE SQL
NO DBINFO
FENCED NOT THREADSAFE
 Chapter 2. Language compatibility features 93

MODIFIES SQL DATA
PROGRAM TYPE SUB
EXTERNAL NAME 'outlanguage!outlanguage'!

4. Run the bldrtn build script for the outlanguage.sqc file using the
db2_emp database:

bldrtn outlanguage db2_emp

5. Make a connection to the database by running this command:

db2 connect to db2_emp

6. Run the script to catalog the procedure by running this command:

db2 -td! -vf outlanguage_crt.db2 > message.out

DB2 responds with the following message:

DB20000I The SQL command completed successfully.

The message.out file should be viewed for messages, especially if any other
message than The SQL command completed successfully is returned.

7. Test the procedure by running the following command:

db2 "call outlanguage(?)"

The results are:

Value of output parameters

Parameter Name : LANGUAGE
Parameter Value : SQL
Return Status = 0

Building Java routines
To create an external Java user-defined function (UDF) from the DB2 command
window, complete the following steps:

1. Compile your_javaFileName.java file to produce the
your_javaFileName.class file by running the following command:

javac your_javaFileName.java

2. Copy the your_javaFileName.class file to the sqllib\function directory on
the Windows operating systems or to the sqllib/FUNCTION directory on UNIX.

3. Connect to the database by running the following command:

db2 connect to your_database_name

4. Register the your_javaFileName library in the database by using the CREATE
FUNCTION SQL statement:

db2 –td! –vf <your_create_function_statement.db2>
94 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Here is an example of a procedure that creates a Java UDF that retrieves the
system name from the DB2 Registry variable DB2SYSTEM:

1. The Java source file that is shown in Example 2-78 is saved as
db2system_nameUDF.java.

Example 2-78 UDF Java source

import java.io.*;
public class db2system_nameUDF {
 public static String db2system_name() {
 Runtime rt = Runtime.getRuntime();
 Process p=null;
 String s = null;
 String returnString = "";
 try {
 // WINDOWS: **** uncomment and compile the following for
Windows
 // p = rt.exec("cmd /C db2set DB2SYSTEM");
 // UNIX: **** uncomment and compile the following for UNIX
 p = rt.exec("db2set DB2SYSTEM");
 BufferedInputStream buffer =
 new BufferedInputStream(p.getInputStream());
 BufferedReader commandResult =
 new BufferedReader(new InputStreamReader(buffer));
 try {
 while ((s = commandResult.readLine()) != null)
 returnString = returnString.trim() + s.trim() ;
 // MAX number of chars for the DB2SYSTEM variable is 209

characters
 commandResult.close();
 // Ignore read errors; they mean process is done
 } catch (Exception e) {
 }
 } catch (IOException e) {
 returnString = "failure!";
 }
 return(returnString);
 }
}

2. Compile the Java source. The compile command is:

javac db2system_nameUDF.java
 Chapter 2. Language compatibility features 95

3. Copy the .class file to the /sqllib/function directory by running the
following command:

$ cp db2system_nameUDF.java /home/db2inst1/sqllib/function

4. Construct the CREATE FUNCTION file and save it as db2system_name.db2:

DROP FUNCTION DB2SYSTEM_NAME !
CREATE FUNCTION DB2SYSTEM_NAME ()
RETURNS VARCHAR(209)
EXTERNAL NAME 'db2system_nameUDF!db2system_name'
LANGUAGE JAVA
PARAMETER STYLE JAVA
NOT DETERMINISTIC
NO SQL
EXTERNAL ACTION!

5. Connect to the database by running the following command:

db2 connect to db2_emp

6. Run the script to register the UDF with the database by running the
following command:

db -td! -vf db2system_name.db2

7. Test the UDF by running the following command:

db2 "values db2system_name()"

The results are:

smpoaix

1 record(s) selected.

2.1.11 PL/SQL packages

Both Oracle and DB2 support the concept of grouping database-related objects
in a single unit, which is known in Oracle as a package and in DB2 as a module.
In addition to its native modules, DB2 provides support for the full set of PL/SQL
modular features that are extended to both user and system defined (built-in)
packages. Therefore, the definition of a package or module as “a database object
that is a collection of other database objects, such as functions, procedures,
types, and variables” is valid for both database systems. This book uses the
terms module and package interchangeably.
96 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The following package features can be useful database objects:

� Extend schema support by grouping, in a named set, a collection of related
data type definitions, database object definitions, and other logic elements,
including:

– PL/SQL procedures and functions

– Public prototype of procedures and functions

– User-defined data type definitions, including distinct type, array type,
associative array type, row type, and cursor type

� Define a name space so that objects defined within the package can refer to
other objects defined in the package without providing an explicit qualifier.

� Add object definitions that are private to the package. These objects can be
referenced only by other objects within the package.

� Add object definitions that are published. Published objects can be referenced
from within the package or from outside of the package.

� Define published prototypes of routines without routine bodies in packages
and later implement the routine bodies using the routine prototype.

� Initialize the package by executing the package initialization procedure for the
package. This procedure can include SQL statements and SQL PL
statements, and can be used to set default values for global variables or to
open cursors.

� Reference objects that are defined in the package from within the package
and from outside of the package by using the package name as a qualifier
(two-part name support) or a combination of the package name and schema
name as qualifiers (three-part name support).

� Drop objects that are defined within the package.

� Drop the package.

� Manage who can reference objects in a package by granting and revoking the
EXECUTE privilege for the package.

User-defined packages
You can create user-defined packages in DB2 using the same syntax that you
use in Oracle. As expected, these packages have the same structure and
requirements. Similar to Oracle, DB2 user-defined packages have schema
extensions that provide name space support for the objects that they reference.
They are repositories in which executable code can be defined. Using a package
involves referencing or executing objects that are defined in the package
specification and implemented within the package.
 Chapter 2. Language compatibility features 97

You can use the CREATE OR REPLACE PACKAGE syntax to create a package
specification, which defines the interface to a package. You can create a package
specification to encapsulate related database objects, such as type, procedure,
and function definitions, within a single context in the database. A package
specification establishes which package objects can be referenced from outside
of the package (known as public elements of that package).

Similar to Oracle, you can refer to any of the public objects that are defined in the
package specification (variable, constant, exception, function, and procedure)
with the following three-part name qualifier:

<schema_name>.<package_name>.<object_name>

A package body contains the implementation of all of the procedures and
functions that are declared within the package specification. The CREATE PACKAGE
BODY statement creates a package body that contains the implementation of all of
the procedures and functions that are declared within the package specification,
and any declaration of private types, variables, and cursors.

Synonyms can be created in packages the same way as in any other
database object.

An example of a basic package, called c, is in Appendix C, “Built-in modules” on
page 321. This package example demonstrates the traditional PL/SQL
functionality that you frequently see in Oracle user-defined packages, such as
creating a package specification and body, a procedures definition within
package, a definition of associative array, anchor data types %TYPE and %ROWTYPE,
exception handling, cursor definition, DBMS_OUTPUT built-in package, and
other functions.

Support for built-in packages
DB2 provides support for the most widely used built-in Oracle packages through
system-defined modules (built-in packages). These packages include routines
and procedures that can simplify the procedural and application logic. The
packages provide enhanced capabilities for communicating through messages
and alerts, for creating, scheduling, and managing jobs, for operating on large
objects, for executing dynamic SQL, for working with files on the database server
file system, and for sending email.
98 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Table 2-7 lists these packages and their descriptions.

Table 2-7 New built-in packages

Detailed references about these packages, their method, and some examples
are in Appendix C, “Built-in modules” on page 321. More detailed information
about the built-in packages (system-defined module) is available in the DB2
Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.ap
dv.sqlpl.doc/doc/c0053670.html

Package (module) Description

DBMS_ALERT Provides a set of procedures for registering alerts, sending
alerts, and receiving alerts.

DBMS_JOB Provides a set of procedures for creating, scheduling, and
managing jobs. DBMS_JOB is an alternative interface for the
Administrative Task Scheduler (ATS).

DBMS_LOB Provides a set of routines for operating on large objects.

DBMS_OUTPUT Provides a set of procedures for putting messages (lines of text)
in a message buffer and getting messages from the message
buffer within a single session. These procedures are useful
during application debugging when you need to write messages
to standard output.

DBMS_PIPE Provides a set of routines for sending messages through a pipe
within or between sessions that are connected to the same
database.

DBMS_SQL Provides a set of procedures for executing dynamic SQL.

DBMS_DDL The DBMS_DDL module provides the capability to obfuscate
DDL objects, such as routines, triggers, views, or PL/SQL
packages.

DBMS_UTILITY Provides a set of utility routines.

UTL_DIR Provides a set of routines for maintaining directory aliases that
are used with the UTL_FILE package.

UTL_FILE Provides a set of routines for reading from and writing to files on
the database server file system.

UTL_MAIL Provides a set of procedures for sending email.

UTL_SMTP Provides a set of routines for sending email using the Simple Mail
Transfer Protocol (SMTP).
 Chapter 2. Language compatibility features 99

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.sqlpl.doc/doc/c0053670.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.sqlpl.doc/doc/c0053670.html

2.1.12 Triggers

A trigger is a database object that consists of set of SQL statements that are
automatically executed when a specified action occurs. A trigger is associated
with a specific table and defines a set of actions within the trigger construct
(consisting of SQL or PL/SQL statements) that are triggered in response to an
SQL INSERT, DELETE, or UPDATE operation on the specified table.

The trigger functionality is supported in both Oracle and DB2. In both databases,
triggers can be used for various actions, for example, updates to other tables,
automatically generating or transforming values for inserted or updated rows, or
started functions to perform tasks, such as issuing alerts.

Triggers can be fired once for the FOR EACH ROW or FOR EACH STATEMENT
triggers, and before, instead of, or after the triggered operation occurs. In
PL/SQL, DB2 supports FOR EACH ROW BEFORE and AFTER triggers.

You can use Oracle to define a single trigger that can contain triggered actions
for INSERT, DELETE, and UPDATE actions on the table, which is known as a
multi-action trigger.

Example 2-79 shows an Oracle multi-action trigger with INSERT, DELETE, and
UPDATE actions that synchronize the entries in the EMPLOYEES and
DEPARTMENTS table when the data changes in the EMPLOYEES table. DB2
supports the SELECT statement on the same table on which the trigger is defined,
which Oracle does not.

Example 2-79 Multi-action trigger

CREATE OR REPLACE TRIGGER Update_Departments
 AFTER INSERT OR DELETE OR UPDATE ON employees FOR EACH ROW

DECLARE
INS integer:=0;
DEL integer:=0;
UPD integer:=0;

BEGIN
 IF DELETING THEN
 UPDATE departments
 SET (total_projects, total_employees)=
 (SELECT count(1), SUM(current_projects) FROM employees)
 WHERE dept_code=:old.dept_code;
 DEL := 1;
 ELSIF INSERTING THEN
 UPDATE departments
 SET (total_projects, total_employees)=
100 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 (SELECT count(1), SUM(current_projects) FROM employees)
 WHERE dept_code=:new.dept_code;
 INS := 1;
 ELSIF UPDATING THEN
 UPDATE departments
 SET (total_projects, total_employees)=
 (SELECT count(1), SUM(current_projects) FROM employees)
 WHERE dept_code IN (:old.dept_code, :new.dept_code);
 UPD := 1;
 END IF;

 IF (DEL = 1) THEN
 INSERT INTO logged_table VALUES(SYSDATE, 'table row delete');
 ELSIF (INS = 1) then
 INSERT INTO logged_table VALUES(SYSDATE, 'table row insert');
 ELSIF (UPD = 1) then
 INSERT INTO logged_table VALUES(SYSDATE, 'table row update');
 END IF;
END Update_Departments;
/

When you create a trigger with the CREATE TRIGGER statement, you can define the
following attributes:

� Include more than one operation in the trigger event clause. You can use
UPDATE, DELETE, and INSERT operations together in a single clause. This
capability means that the trigger is activated by the occurrence of any of the
specified events. One, two, or all three trigger events can be arbitrarily
specified in a CREATE TRIGGER statement. However, an operation cannot be
specified more than once.

� Identify the event that activated a trigger. The trigger event predicates of
UPDATING, INSERTING, and DELETING can be used as Boolean conditions for
identifying trigger actions. Trigger event predicates can be used only in the
trigger action of a CREATE TRIGGER statement that uses a compound SQL
(compiled) statement.

� Use statement level triggers in PL/SQL. You can create triggers that fire only
one time per statement regardless of the number of rows affected.
 Chapter 2. Language compatibility features 101

Example 2-80 demonstrates how to separate the multi-action trigger from
Example 2-79 on page 100 into three separate triggers (one for each action of
INSERT, DELETE, and UPDATE) for DB2 versions before DB2 9.10.

Example 2-80 Three DB2 triggers corresponding to a multi-action trigger

CREATE OR REPLACE TRIGGER Update_Departments_I
 AFTER INSERT ON employees FOR EACH ROW

DECLARE
BEGIN
 UPDATE departments
 SET (total_projects, total_employees)=
 (SELECT count(1), SUM(current_projects) FROM employees)
 WHERE dept_code=:new.dept_code;
 INSERT INTO logged_table VALUES(SYSDATE, 'table row insert');
END Update_Departments_I;
/

CREATE OR REPLACE TRIGGER Update_Departments_D
 AFTER DELETE ON employees FOR EACH ROW

DECLARE
BEGIN
 UPDATE departments
 SET (total_projects, total_employees)=
 (SELECT count(1), SUM(current_projects) FROM employees)
 WHERE dept_code=:old.dept_code;
 INSERT INTO logged_table VALUES(SYSDATE, 'table row delete');
END Update_Departments_D;
/

CREATE OR REPLACE TRIGGER Update_Departments_U
 AFTER UPDATE ON employees FOR EACH ROW

DECLARE
BEGIN
 UPDATE departments
 SET (total_projects, total_employees)=
 (SELECT count(1), SUM(current_projects) FROM employees)
 WHERE dept_code IN (:old.dept_code, :new.dept_code);
 INSERT INTO logged_table VALUES(SYSDATE, 'table row update');
END Update_Departments_U;
/

102 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Often, inside of the trigger, there are common statements that are outside of the
DELETING, INSERTING, and UPDATING blocks. In this case, it is necessary to add
these common statements to each of the separated triggers. As a preferred
practice, extract complex logic from a trigger, place it in a procedure, and started
the procedure from the trigger.

Oracle supports the enablement and disablement of triggers globally using the
ALTER TRIGGER statement. In DB2, triggers can either be dropped and re-created
instead, or global or package variables can be used to control whether the
triggers are fired in a specific context.

DB2 has a feature that is equivalent (to a certain degree) to Oracle database
triggers. Basically, you can instruct DB2 to run a stored procedure each time a
new connection to the database is created. You can use this generic feature to
configure database session environments by setting session parameters.

For more information, see the description for the connect_proc database
configuration parameter at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.i
bm.db2.luw.admin.dbobj.doc%2Fdoc%2Fc0057372.html

2.1.13 SQL statements

DB2 provides native support for most Oracle SQL syntax, which allows existing
Oracle based applications to run on a DB2 database with no or minimal code
changes. This section includes examples of the most often used SQL syntax.

The TRUNCATE table SQL statement
DB2 includes a TRUNCATE statement for quickly deleting all rows from a database
table. The difference between the TRUNCATE statement and the DELETE statement
is that the TRUNCATE statement cannot be rolled back and that the IMMEDIATE
keyword is mandatory. When the DB2_COMPATIBILITY_VECTOR registry variable is
set, the IMMEDIATE keyword is no longer required.
 Chapter 2. Language compatibility features 103

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.dbobj.doc%2Fdoc%2Fc0057372.html

Example 2-81 shows the usage of TRUNCATE.

Example 2-81 TRUNCATE table

CREATE TABLE trunct1(c1 int);
INSERT INTO truncT1 VALUES (1), (2), (3);
SELECT * FROM truncT1;
C1

1
2
3
3 record(s) selected.
TRUNCATE truncT1;
SELECT * FROM truncT1;
C1

0 record(s) selected.

Autonomous transaction
DB2 provides support for autonomous transaction, a mechanism that you can
use to run a block of statements (or a separate transaction) independently of the
outcome of the started transaction. This feature is useful when you move
applications with autonomous transactions supported by Oracle. DB2 supports
PRAGMA AUTONOMOUS_TRANSACTION for the outer block of a stored procedure. A
procedure that you define with this clause runs within its own session, meaning
that the procedure is independent of the calling transaction. If you need separate
blocks of a procedure, a trigger, or a function to run autonomously, wrap the
statements into an autonomous procedure.

Important: If your database has the BLOCKNOTLOGGED parameter enabled, a
TRUNCATE statement waits until the current backup operation on the table
space where the table is defined finishes.

Because DB2 uses one thread per table space for the backup process, if you
have a table space that is much larger than the other table spaces (as in the
case of a staging table), the overall backup process time depends on the size
of the largest table space. You cannot execute a TRUNCATE (or other operations
that are not logged) during the online backup. If the TRUNCATE operation is part
of your business logic, the TRUNCATE can negatively impact the transaction
response time and can lead to timeouts in the client application.
104 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Hierarchical queries
Hierarchical queries are a form of recursive query that provides support for
retrieving a hierarchy from relational data using a CONNECT BY clause,
pseudo-columns (LEVEL), unary operators (CONNECT_BY_ROOT and PRIOR), and the
SYS_CONNECT_BY_PATH scalar function.

CONNECT BY recursion uses the same subquery for the seed (start) and the
recursive step (connect). This combination provides a concise method of
representing recursions, such as reports-to-chains presented in
CONNECT BY recursion.

The query in Example 2-82 relies on the child-parent relationship between
emp_id and emp_mgr_id in the Employees table. It returns the ID and the last
name for each employee together with their manager's employee ID and the
number of people in the reporting chain. This syntax is supported on both Oracle
and DB2.

Example 2-82 CONNECT BY recursion

SELECT substr(lpad('', level * 2) || emp_id,1,20) AS emp_id,
 last_name, emp_mgr_id,
 level as number_in_report_chain
FROM employees
START WITH emp_mgr_id IS NULL
CONNECT BY PRIOR emp_id = emp_mgr_id
ORDER BY emp_id;
 Chapter 2. Language compatibility features 105

Figure 2-2 shows the output.

Figure 2-2 Output of a CONNECT BY recursive SQL statement

Example 2-83 presents a hierarchical query that features different hierarchical
syntax constructions, such as CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH in
combination with START WITH... CONNECT BY PRIOR, which we could run
successfully on both Oracle and DB2.

Example 2-83 Demonstrating CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH

SELECT
(INITCAP(last_name) || ', ' || substr(first_name,1,1)) as employee,

 CONNECT_BY_ROOT (INITCAP(last_name) ||', '|| substr(first_name,1,1))
 as top_manager,

SYS_CONNECT_BY_PATH ((INITCAP(last_name) ||', '||
 substr(first_name,1,1)),' > ') as report_chain
FROM employees

START WITH band = '5'
CONNECT BY nocycle PRIOR emp_id = emp_mgr_id
ORDER BY employee;
106 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The query returns the report chain of the employees in the EMPLOYEES table,
as shown in Figure 2-3. The names shown in Figure 2-3 are fictitious. These
names are used for instructional purposes only.”

Figure 2-3 Output of query with CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH

ROWNUM
Oracle uses the ROWNUM pseudo-column to control the number of rows that
are returned from an SQL statement. DB2 supports the same exact syntax. The
following statement runs in both Oracle and DB2:

SELECT * FROM employees WHERE ROWNUM < 10 ;

Additionally, DB2 has its own syntax to achieve the same task: The number of
rows to read is determined by the FETCH FIRST n ROWS ONLY statement:

SELECT * FROM employees FETCH FIRST 9 ROWS ONLY;
 Chapter 2. Language compatibility features 107

This DB2 syntax is equivalent (synonymous) to the previous ROWNUM example.
Starting with DB2 10, the optimizer automatically considers the ROWNUM row
limiting expressions for optimization, such as ROWNUM < 10 in the previous
example, to match the native equivalent FETCH FIRST 9 ROWS ONLY. This
optimization can help to optimize query plans based on the reduced number of
rows that are returned by the query.

UPDATE and DELETE statements can also be executed on both Oracle and DB2, as
shown in Example 2-84. The example updates the office location for five
employees' records from the EMPLOYEES table, which are older than one year
and belong to department D11. The DELETE statement deletes five employees’
records with office location 5.

Example 2-84 UPDATE and DELETE statements using ROWNUM

UPDATE employees
SET office_id = 5
WHERE create_date < SYSDATE - 365
AND dept_code = 'D11'
AND ROWNUM <= 5 ;

DELETE FROM employees
WHERE office_id = 5
AND ROWNUM <= 5;

Row identifier (ROWID)
Each row in an Oracle database has a unique row identifier, or ROWID, that
contains the physical address of a row in a database and uniquely identifies this
row. This value is stored with the row and does not change over the life of the row
in the table, until a table reorganization occurs, which can physically change the
row location. ROWID is known as a pseudo-column and is used internally by the
database to access the row; it is known to be the fastest way to access a single
row in the database.

You can use the ROWID in the SELECT and WHERE clause of a query, but you
cannot manipulate (insert, update, or delete) a value of the ROWID
pseudo-column. When you describe a table using the DESCRIBE command,
ROWID does not appear.
108 Oracle to DB2 Conversion Guide: Compatibility Made Easy

DB2 provides support for this qualifier. Figure 2-4 shows the ROWID from the
EMPLOYEE table that is retrieved with the following query:

SELECT ROWID, emp_id FROM employees;

Figure 2-4 ROWID values in DB2

ROWID is often used in the procedural language to speed up the row access in
high volume insert, update, and delete operations. With the current support of
ROWID in DB2, the logic works without changes. If you want to store a ROWID in
a PL/SQL variable, create the following DB2 user distinct types:

CREATE DISTINCT TYPE ROWID AS VARCHAR(16) FOR BIT DATA WITH
COMPARISONS;
CREATE FUNCTION CHARTOROWID(VARCHAR(16) FOR BIT DATA)
 RETURNS ROWID SOURCE ROWID(VARCHAR());
CREATE FUNCTION ROWIDTOCHAR(ROWID)
 RETURNS VARCHAR(16) FOR BIT DATA SOURCE VARCHAR(ROWID);

Example 2-85 shows a way to store a ROWID in a PL/SQL variable.

Example 2-85 ROWID distinct type

CREATE DISTINCT TYPE ROWID AS VARCHAR(16) FOR BIT DATA WITH
COMPARISONS;

SET SERVEROUTPUT ON
/
DECLARE
 x ROWID;
 Chapter 2. Language compatibility features 109

 ln VARCHAR2(30);
BEGIN
 SELECT ROWID INTO x FROM emp WHERE rownum=1;
END;
/

Outer join operator
Both Oracle and DB2 support the ANSI SQL syntax for three types of outer join
(right, left, and full), and the left and right outer join (+) operator. When you move
applications from Oracle to DB2, the outer join operator (+) could be used
interchangeably with the ANSI SQL outer join syntax.

The outer join operator can be specified only within predicates of the WHERE
clause on columns that are associated with table references specified in the FROM
clause of the same subselect.

In Example 2-86, the right outer join correctly skips the records that have no
corresponding entries, which demonstrates the outer join (+) operator syntax.

Example 2-86 Outer join

SELECT
e.emp_id, e.first_name, substr(e.last_name, 1, 1) last_initial,
e.dept_code,
NVL(d.dept_name, 'Unassigned or unknown Department') as department

FROM
employees e,
departments d

WHERE
e.dept_code = d.dept_code (+)

ORDER BY department DESC, emp_id asc;
110 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Figure 2-5 shows the output.

Figure 2-5 Outer join query output

Be aware of an invalid cycle. A cycle is formed across multiple joins when the
chain of predicates reference back to an earlier table reference. In Example 2-87,
T1 is the outer table in the first predicate and later, in the third predicate, there is
a circular reference back to T1. Although, T2 is referenced twice in both first and
second predicates, this usage is not itself a cycle.

Example 2-87 Demonstration of valid and invalid cycles

SELECT * FROM T1,T2,T3
 WHERE T1.a1 = T2.b2(+) -- T2 - OK
 AND T2.b2 = T3.c3(+) -- T2 - OK
 AND T3.c3 = T1.a1(+) -- Be aware of invalid cycle on T1 - Not
allowed!
 Chapter 2. Language compatibility features 111

Select from DUAL
Oracle provides a dummy table that is called DUAL, which is frequently used to
retrieve system information. Although DB2 has its own equivalent that is called
SYSIBM.SYSDUMMY1, support for calls to DUAL is provided. The following
statement retrieves the same values on both Oracle and DB2:

SELECT SYSDATE AS CURRENT_DATE_TIME FROM DUAL;

Oracle optimizer hints
Oracle provides optimizer hints for controlling the optimizer's behavior. Because
of the fundamental differences in the two optimizers, the Oracle optimizer hints
given in the SQL queries are not applicable to DB2. To simplify the enablement
process, DB2 ignores the hints and no changes to the code are necessary.

The DB2 optimizer is one of the most sophisticated cost-based optimizers in the
industry. Directly influencing the optimizer is usually a rare case. For more
information about providing explicit optimization guidelines to the DB2 optimizer,
review the optimizer profiles and guidelines topic and related concepts at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.ad
min.perf.doc/doc/c0060612.html

TRUNCATE as an SQL statement
As with Oracle, DB2 9.7 includes a new TRUNCATE statement that you can use to
quickly delete all rows from a database table. Unlike the DELETE statement, the
TRUNCATE statement cannot be rolled back, which corresponds to the support
provided by Oracle, Sybase, and Microsoft SQL Server. You can find a detailed
discussion and an example in “The TRUNCATE table SQL statement” on
page 103.

SELECT INTO statement with the FOR UPDATE clause
DB2 supports the FOR UPDATE clause in the SELECT INTO statement to lock the
selected row for later update, as in Oracle. The SELECT INTO statement produces
a result table that consists of at most one row, and assigns the values in that row
to host variables. The FOR UPDATE clause specifies that the selected row from the
underlying table is locked to facilitate updating the row later in the transaction,
similar to the locking done for the SELECT statement of a cursor, which includes
the FOR UPDATE clause.
112 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.perf.doc/doc/c0060612.html

Example 2-88 shows an SELECT INTO with FOR UPDATE example.

Example 2-88 SELECT INTO FOR UPDATE

DECLARE
 empid_var employees.empid%TYPE;
 new_lastname employees.lastname%TYPE;
 name_var employees.lastname%TYPE;
BEGIN
 empid_var := 1000;
 new_lastname := 'NEW_NAME';
 --- changing the lastname of employee because of the marital status
changed
 --- empid is a unique key

 SELECT lastname INTO name_var FROM employees
 WHERE empid = empid_var FOR UPDATE OF lastname;

 UPDATE employees SET lastname = new_lastname
 WHERE empid = empid_var;
END;

2.2 Schema compatibility features

DB2 schema compatibility features can help when you change schemas and the
corresponding functions.

2.2.1 Extended data type support

When you provide extended data type support, you can use DB2 to create tables
in DB2 using Oracle DDL without changing table structures. Now you can use the
NUMBER and VARCHAR2 data types. You can also have the database manager
interpret the DATE data type (normally composed of year, month, and day) as a
TIMESTAMP(0) data type (composed of year, month, day, hour, minute, and
second). Almost all of the corresponding Oracle compatible functions for
manipulating these data types and performing data type arithmetic on the DATE
data type are also supported.

You can now run Oracle DDL to create tables directly in DB2, except for only a
few data types, and it still requires correct mapping to the appropriate DB2 data
types. For example, depending on the application requirements for number (38)
data type, you might choose to change it to a large integer, decfloat (34), decimal
(14.0), or simply to number (31).
 Chapter 2. Language compatibility features 113

For more information about the new data types, see the following topics at the
DB2 Information Center:

� VARCHAR2 data type:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.
db2.luw.apdv.porting.doc/doc/r0052880.html

� NUMBER data type:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.
db2.luw.apdv.porting.doc/doc/r0052879.html

� DATE data type based on TIMESTAMP(0):

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.
db2.luw.apdv.porting.doc/doc/r0053667.html

� NCHAR data types:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw
.sql.ref.doc/doc/r0057004.html

2.2.2 Flexible schema changes in DB2

The schema changes features in DB2 are designed to increase the availability,
minimize database downtime, and simplify the administration tasks when
schema changes are needed.

Maximum length of DB2 identifier names for schema objects
The identifier names of a DB2 schema object, such as index and constraints, are
increased to 128 characters. With this size increase, changing the object name
during conversion is no longer required.

Important: If you transfer Oracle DATE in DB2 TIMESTAMP(0), all the time
parts of the TIMESTAMP data are filled with “0”. This automatic fill induces a
lower selectivity for that field and can, in turn, induce suboptimal plans. If so,
you must ensure that detailed statistics are collected for the column to provide
the optimizer with correct input. Failing to do so can impact request response
time and the overall database performance.
114 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.porting.doc/doc/r0052880.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.porting.doc/doc/r0052879.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.porting.doc/doc/r0053667.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0057004.html

Altering table statement
By providing features, such as immediate alteration of the table definitions and
extended support for the ALTER TABLE statement (specifically, the ALTER COLUMN
SET DATA TYPE option), DB2 improves availability and simplifies administration.
You can change the database with a minimal or no outage. This functionality,
sometimes referenced as schema evolution, includes features, such as the ability
to change column data types, rename a column or index, or add a default.

Altering objects
The alter objects options, such as CREATE OR REPLACE and REVALIDATE, can
simplify the process of altering database objects.

CREATE OR REPLACE allows for dynamic replacement for definitions of views,
sequences, routines, and packages, which could be altered in any order and then
be revalidated automatically the first time they are used. This situation is
especially important when there are dependencies of the database objects that
were altered. For example, if a function selects data from a view that is built on a
table that you alter, both the view and the function definition are invalidated when
the change in the table definition occurs. DB2 revalidates automatically both the
function and the view the first time when they are called.

You can also revalidate the database objects manually by running a single
database procedure named ADMIN_REVALIDATE_DB_OBJECTS. In the following
example, all objects in the schema that is called MY_SCHEMA are revalidated:

CALL ADMIN_REVALIDATE_DB_OBJECTS (NULL, 'MY_SCHEMA', NULL);

To see different options of this procedure, see the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/
com.ibm.db2.luw.sql.rtn.doc/doc/r0053626.html

The revalidation option depends on a database configuration parameter that is
called AUTO_REVAL, which is described in 2.1.1, “SQL compatibility setup” on
page 22.

2.2.3 Sequences

The sequences in Oracle and DB2 have the same definition and syntax. The
enablement process requires no manual changes to the CREATE SEQUENCE
statements. In addition to the sequence functionality, DB2 provides an option for
the user to use the identity column functionality when you must automatically
generate values for the table.
 Chapter 2. Language compatibility features 115

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.db2.luw.sql.rtn.doc/doc/r0053626.html

Sequence characteristics
The sequence includes the following characteristics:

� Sequences are not tied to any one table.

� Sequences generate sequential values that can be used in any SQL or
XQuery statement.

� Because sequences can be used by any application, two expressions are
used to control the retrieval of the next value in the specified sequence and
the retrieval of the value that is generated previous to the statement that
is executed.

The PREVIOUS VALUE expression returns the most recently generated
value for the specified sequence for a previous statement within the
current session.

The NEXT VALUE expression returns the next value for the specified
sequence. The use of these expressions allows the same value to be used
across several SQL and XQuery statements within several tables.

After you create a sequence that is called EMPLOYEE_SEQUENCE, see
Example 2-89 for typical PL/SQL code calls to this sequence. This code can be
run in both Oracle and DB2.

Example 2-89 Sequence

CREATE SEQUENCE EMPLOYEE_SEQUENCE
 MINVALUE 1
 MAXVALUE 999999999999999999999999999
 INCREMENT BY 1
 START WITH 2
 CACHE 20 NOCYCLE NOORDER ;

CREATE PUBLIC SYNONYM EMPLOYEE_SEQUENCE FOR SEQUENCE SALES.EMPLOYEE_SEQUENCE;
 SELECT employee_sequence.NEXTVAL INTO v_EmployeeId FROM dual;
 ...
 SELECT employee_sequence.CURRVAL INTO v_EmployeeId FROM dual;
 ...
 EXECUTE IMMEDIATE 'INSERT INTO employees(emp_id, first_name, last_name,
 current_projects, emp_mgr_id, dept_code, acct_id, office_id, band,
 create_date) VALUES (' || v_EmployeeId || ', UPPER(''' || p_FirstName ||
 '''), UPPER(''' || p_LastName || '''), 0, '|| p_EmpMgrId || ',''' ||
 p_DeptCode || ''', ' || p_Account || ',' || p_OfficeId || ', 1,''' ||
 p_CreateDate || ''')';
 ...
 DBMS_OUTPUT.PUT_LINE('Employee record id ' || v_EmployeeId || '
 was created successfully.');
116 Oracle to DB2 Conversion Guide: Compatibility Made Easy

For a complete sequence usage example, see the ADD_NEW_EMPLOYEE
procedure in our test case procedure that is shown in Appendix C, “Built-in
modules” on page 321.

2.2.4 Index enablement

Indexes play an important role in the efficient data retrieval alternative to the
sequential table scan. Most of the indexes from the Oracle database can be
deployed straight to DB2. In this section, we describe similarities and differences
in the index implementation in Oracle and DB2.

Including a column index
The DB2 INCLUDE column index is a concept that is also available on some
other database systems. When you create a unique index, you can include extra
columns to the index using the INCLUDE clause. The INCLUDE columns are
stored with the index but are not sorted and considered for uniqueness. Using
the INCLUDE columns improves the performance of data retrieval when index
access is involved because DB2 can retrieve data directly from the index page
instead of the data page.

Example 2-90 shows the creation of an index with INCLUDE columns.

Example 2-90 Creating an index with INCLUDE columns

CREATE UNIQUE INDEX ix1 ON employee
(name ASC) INCLUDE (dept, mgr, salary, years)

Clustered index support
Although both Oracle and DB2 have clustered indexes, the term “cluster” in
relation to indexes has a different meaning in each database.

In Oracle, a cluster index means an index on a clustered or partitioned table.

In DB2, if an index is created with the CLUSTER option, the index provides the
table clustering. In other words, with the clustering index, the data in the table is
rearranged in the same order as the data of the index.

The DB2 clustering index provides performance enhancements when a query
scans most of the data in the same order as the data of the index. When a new
row is inserted, an attempt is made to keep the new row physically close to rows
that have key values logically closed in the index-key sequence. Each table can
have only one clustered index because a table can be only in the same physical
order as one index.
 Chapter 2. Language compatibility features 117

Example 2-91 provides an example statement that is used to create a
clustering index.

Example 2-91 How to create a clustered index in DB2

CREATE INDEX inxcls_emp_empno
ON employee (empno ASC)
CLUSTER
PCTFREE 10
MINPCTUSED 40;

Bitmap indexes
Support for the Oracle bitmap index is not available in DB2. This type of index is
aimed at data warehousing and is suitable for an index where there are few key
values (low cardinality), for example, gender or state. In DB2, this type of index is
not required because the DB2 optimizer might create dynamic bitmap indexes
during the execution of certain types of queries (if needed).

Indexing expressions
In Oracle, this functionality is known as a function-based index. It computes the
value of the function or expression and stores it in the index. DB2 provides the
exact same functionality. Here is its syntax:

CREATE INDEX emp_name ON emp(UPPER(name));

This feature can also be applied to multi-column indexes and it supports unique
indexes and INCLUDE columns.

Partitioned table indexes
In DB2, the indexes that are created on partitioned tables can be both local and
global. For more details about these indexes, see “Indexes on partitioned tables”
on page 136.

2.2.5 Constraints enablement

Both DB2 and Oracle support the same type of constraints, such as primary and
foreign keys, unique, NOT NULL, and check constraints. Some of these
constraints, such as primary keys and check constraints, are identical in both
databases; others have specifics.
118 Oracle to DB2 Conversion Guide: Compatibility Made Easy

For example, all columns that are specified in a unique constraint in DB2 must be
defined as NOT NULL, while Oracle allows NULL values in a unique constraint. You
overcome this issue in DB2 by defining a unique index on these columns instead
of defining the unique constraint in the CREATE TABLE statement. Before DB2
10.5, you can have only one NULL key value in your unique index. With DB2
10.5, a new clause, EXCLUDE NULL KEYS, is introduced. This clause prevents
NULL key values from being considered for the uniqueness of an index. A NULL
key value in a multi-column index is defined as all key parts containing the
NULL value.

In Oracle, you are not required to add a NOT NULL attribute to a column in a table
to define a primary key that includes the column. In DB2, you must explicitly
specify the NOT NULL attribute if a primary key is to be defined on that column.

To enforce referential integrity, both DB2 and Oracle support foreign key
constraints, in which a parent table’s primary key is referenced by the child table.
Additionally, you can use DB2 to enforce the referential integrity for any unique
constraints (not just for the primary key). This constraint is especially useful when
the unique constraint is a composite key and it can automatically apply more
complex dependencies between the tables.

When you must perform operations, such as loading data into a table, altering a
table by adding constraints, or adding a generated column, you usually want to
temporarily disable the constraints, complete the operation, and then revalidate
and enable the constraints. You can use the DB2 SET INTEGRITY mechanism to
perform this manual integrity processing, as shown in Example 2-92.

Example 2-92 How to use SET INTEGRITY in DB2

db2 set integrity for Table1 off;
-- perfrom the desired operation:
-- DB2 Load, Alter Table to add constraints, etc.
db2 set integrity for Table1 immediate checked;

For information about the options that are related to the SET INTEGRITY
statement, see the DB2 Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sq
l.ref.doc/doc/r0000998.html

DB2 offers one more type of constraint, which is known as the informational
constraint, which is a constraint attribute that can be used by the SQL compiler
to improve access to data. Informational constraints are not enforced by the
database manager and are not used for more verification of data. Rather, they
are used to improve query performance.
 Chapter 2. Language compatibility features 119

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000998.html

2.2.6 Created global temporary tables

Oracle supports the concept of global temporary tables, which correspond to the
created global temporary tables in DB2, and thus provide straight compatibility
between the two databases. In addition, DB2 also provides declared global
temporary tables, which differ from the created global temporary tables because
of their persistent level.

Created global temporary tables are a type of user-defined temporary table in
DB2. An application session can use a created temporary table to store
intermediate result sets for manipulation or repeated references without
interfering with concurrently running applications. The definition of a created
temporary table is stored persistently in the DB2 catalog, which allows this
definition to be shared across all concurrent sessions. Any connection can refer
to a created temporary table at any time without the need for a setup script to
initialize the created temporary table. The content of a created temporary table is
always kept private to each session; a connection can access only the rows that
it inserts.

The persistent storage of the created global temporary table definition results in
the following capabilities that are also common to Oracle:

� After an application session defines a created temporary table, concurrently
running sessions do not have to redefine it.

� You can reference a created temporary table in SQL functions, triggers, and
views in combinations of temporary and permanent tables.

� If the TRUNCATE statement is issued against a temporary table, it truncates only
the specific session and has no effect on the data of other sessions.

� Indexes can be created on temporary tables.

Example 2-93 shows how to create a created global temporary table in DB2 with
the same syntax as in Oracle.

Example 2-93 Create a created global temporary table

CREATE USER TEMPORARY TABLESPACE user_temp;
CREATE GLOBAL TEMPORARY TABLE Employees_Temp_table
 (Employee_number NUMBER,
 Employee_name VARCHAR2(250),
 Department VARCHAR2(3))
ON COMMIT PRESERVE ROWS;

The same temporary table is created in Example 2-94 on page 121 using the
DB2 LIKE syntax. The results of inserting into and selecting from the global
temporary table are the same in both examples.
120 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Example 2-94 Using created global temporary tables

CREATE USER TEMPORARY TABLESPACE user_temp;

CREATE GLOBAL TEMPORARY TABLE Employees_Temp_table
LIKE employees
ON COMMIT PRESERVE ROWS;

INSERT INTO Employees_Temp_table
 SELECT * FROM employees
 WHERE dept_code = 'D21';

SELECT emp_id, first_name, substr(last_name,1,1) last_initial
FROM Employees_Temp_table;

Example 2-95 shows the result of this script.

Example 2-95 Result set - select from a global temp table

EMP_ID FIRST_NAME LAST_INITIAL
------- -------------------- ------------
 23. JAMES J
 26. SYBIL J
 24. SALVATORE M
 20024. ROBERT M
 27. MARIA P
 7. EVA P
 25. DANIEL S

2.2.7 Synonyms

A synonym in Oracle is an alternative name for a database object, such as a
table, view, sequence, procedure, stored function, package, snapshot, or another
synonym. In DB2, the support for this alternative name is also known as an alias
(and vice versa; the aliases in DB2 are also known as synonyms).

DB2 recognizes the same syntax as Oracle for creating synonyms on tables.
When you create a synonym in DB2 for a package, nickname, sequence, view, or
another synonym, specify the type of the database object on which the synonym
is defined. Note the following FOR SEQUENCE clause:

CREATE PUBLIC SYNONYM sequence_syn FOR SEQUENCE myschema.mysequence;
 Chapter 2. Language compatibility features 121

As with Oracle, the aliases (or synonyms) can be PUBLIC (with the schema
SYSPUBLIC) or private (with the schema of the CURRENT USER, if the PUBIC
keyword is not specified).

Example 2-96 creates a public synonym and an alias for the catalog view
SYSCAT.TABLES using two different types of syntax. In the first case, the CREATE
SYNONYM syntax is used in the same exact way as in Oracle. The second example
demonstrates the CREATE PUBLIC ALIAS syntax that is specific to DB2. Although
the syntax is different, the result is the same: two alternative names for
SYSCAT.TABLES are created and the SYSCAT.TABLES could be referenced
anywhere by either of them.

Example 2-96 Two different ways to create a synonym/alias in DB2

CREATE PUBLIC SYNONYM tabs_synonym FOR SYSCAT.TABLES
CREATE PUBLIC ALIAS tabs_alias FOR SYSCAT.TABLES

2.2.8 Views and Materialized Views

Views are similar in Oracle and DB2. Depending on the SQL used in the view
definition, most of the CREATE VIEW (CREATE OR REPLACE VIEW) statements can be
run against DB2 without changes.

The organization_structure view, which is shown in Example 2-97, compiles on
both Oracle and DB2. It uses the following SQL syntaxes:

� CREATE OR REPLACE VIEW
� Recursive SQL statement START WITH ... CONNECT BY
� LEVEL keyword
� COALESCE
� INITCAP
� NVL scalar functions
� An outer join syntax of (+)

It also contains a CASE statement that conditionally calls two functions from a
package named project_package.

Example 2-97 Create or replace view example with multiple SQL syntax structures

CREATE OR REPLACE VIEW organization_structure
("LEVEL", "FULL_NAME", "DEPARTMENT", "ASSIGNMENTS") AS
SELECT
 LEVEL,
 SUBSTR((LPAD(' ', 4 * LEVEL - 1) || INITCAP(e.last_name) || ', '
 || INITCAP(e.first_name)), 1, 40),
 NVL(d.dept_name, 'Uknown') ,
122 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 (CASE COALESCE (d.DEPT_CODE, '001')
 WHEN 'L01' THEN project_package.fn_calc_dept_projects (d.dept_code)
 ELSE project_package.fn_reset_dept_projects (d.dept_code, d.total_employees)
 END) as assignments
FROM
 employees e,
 departments d
WHERE
 e.dept_code=d.dept_code(+)
START WITH emp_id = 1 CONNECT BY NOCYCLE PRIOR emp_id = emp_mgr_id;

The concept of a DB2 Materialized Query Table (MQT) is identical to the
Materialized View in Oracle, and both are based on caching pre-computed query
results as a table that can be later refreshed from the original base tables on
demand or by schedule. The statement to create an MQT is semantically similar
to that of creating an Oracle Materialized View with just a few syntax differences.

The performance gain is because of the ability of the optimizers to automatically
recognize when an existing Materialized View or MQT could be used to satisfy an
incoming query request more efficiently than going to the base tables. Although
this mechanism enables more efficient access and saves processing power, the
data could become out-of-date if not refreshed periodically. For this reason, both
Oracle and DB2 provide a refresh clause with different
scheduling options.

To learn more about Materialized Query Tables and see the enhancements in
DB2, see the DB2 Information Center at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.ad
min.perf.doc/doc/c0005324.html

2.2.9 Object types

Structured types are supported on both Oracle and DB2, and they are similar
conceptually. A structured type is a user-defined data type containing one or
more named attributes or set of method specifications. The attributes are
properties that describe the specifics of the structured type, and each has a
specified data type.
 Chapter 2. Language compatibility features 123

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.perf.doc/doc/c0005324.html

In Example 2-98, the address_type consists of attributes such as street, number,
city, and state. If methods are created, you can use them to define a behavior for
structured types. The methods are routines that extend SQL and are integrated
with a particular structured type. In this example, the methods SAMEZIP and
DISTANCE calculate the information specific to address_type. To achieve identical
functionality in the enablement process, you must use the DB2 syntax.

Using objects types in a PL/SQL context is limited in DB2. For details about what
object types are supported in a PL/SQL context, see 2.1.2, “PL/SQL record and
collection types” on page 27.

Example 2-98 Structured type with Oracle and DB2 syntax

-- DB2 style
CREATE TYPE address_type AS
 (STREET VARCHAR2(30),
 STREETNUMBER CHAR(15),
 CITY VARCHAR2(30),
 STATE VARCHAR2(10))
 NOT FINAL
 MODE DB2SQL

 METHOD SAMEZIP (addr address_type)
 RETURNS INTEGER
 LANGUAGE SQL
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION,

 METHOD DISTANCE (addr address_type)
 RETURNS FLOAT
 LANGUAGE C
 DETERMINISTIC
 PARAMETER STYLE SQL
 NO SQL
 NO EXTERNAL ACTION

-- Oracle syntax
CREATE Or Replace TYPE address_type AS OBJECT (
 STREET VARCHAR2(30),
 STREETNUMBER CHAR(15),
 CITY VARCHAR2(30),
 STATE VARCHAR2(10),

 MEMBER FUNCTION SAMEZIP (addr address_type) RETURN INTEGER,
124 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 MEMBER FUNCTION DISTANCE (addr address_type) RETURN FLOAT
);

It is also common to see a type hierarchy or types that have nested structured
type attributes that are supported in both Oracle and DB2. Because of the great
similarity in concept and for simplicity, Example 2-99 outlines only the DB2 type
declarations and does not provide a step-by-step comparison with Oracle.

Example 2-99 Type hierarchy and nesting of type attributes in DB2

-- Create a type hierarchy consisting of a type for employees and a
subtype
-- for managers.
 CREATE TYPE EMP AS
 (NAME VARCHAR(32),
 SERIALNUM INT,
 SALARY DECIMAL(10,2))
 MODE DB2SQL

 CREATE TYPE MGR UNDER EMP AS
 (BONUS DECIMAL(10,2))
 MODE DB2SQL
-- Create a type that has nested structured type attributes from
-- the type above

 CREATE TYPE PROJECT AS
 (PROJ_NAME VARCHAR(20),
 PROJ_ID INTEGER,
 PROJ_MGR MGR,
 PROJ_LEAD EMP,
 AVAIL_DATE DATE)
 MODE DB2SQL

DB2 also provides support for abstract data types similar to Oracle.
Example 2-100 shows the creation of a type that is later used as a table column.

Example 2-100 Support of abstract data types in DB2 and Oracle

-- DB2 syntax
CREATE TYPE Address_type AS
(StreetNumber VARCHAR (10),
 Street VARCHAR(50),
 City VARCHAR(50),
 Zip VARCHAR (15)
) MODE DB2SQL
 Chapter 2. Language compatibility features 125

/

-- Oracle syntax
create type Address_type AS OBJECT
(StreetNumber VARCHAR (10),
 street VARCHAR (50),
 city VARCHAR (50),
 zip VARCHAR (15)
);
/
--Create table (same syntax for both Oracle and DB2)

CREATE TABLE customer_with_type
(cust_ID integer,
first_name VARCHAR(50),
last_name VARCHAR(50),
Address Address_type
)
/
--
DESCRIBE TABLE customer_with_type;

 Data type Column
Column name schema Data type name Length Scale Nulls
--------------------- --------- ------------------- ---------- ----- -----
CUST_ID SYSIBM INTEGER 4 0 Yes
FIRST_NAME SYSIBM VARCHAR 50 0 Yes
LAST_NAME SYSIBM VARCHAR 50 0 Yes
ADDRESS MyUser ADDRESS_TYPE 0 0 Yes

 4 record(s) selected.

2.2.10 Partitioning and MDC

If you are using partitioned tables on Oracle, as you convert to DB2, you must
plan for similar table partitioning within DB2. This section introduces various
partitioning features that are provided by DB2 and compares these features to
partitioning techniques on Oracle.
126 Oracle to DB2 Conversion Guide: Compatibility Made Easy

In a single database partition, DB2 automatically organizes data on disk by
distributing data in a round robin fashion (by extentsize) across all containers of a
table space. This method of data organization is the default behavior on DB2 and
does not require any further definition. However, DB2 can be designed to
organize data in other ways. These different data organization schemes can be
specified at the database or table level.

The following data organization methods are available on DB2:

� Table partitioning
� Database partitioning
� Multidimensional clustering
� Combining methods of data organization
� Rolling in and rolling out of data
� Oracle flashback-archive
� Indexes on partitioned tables

Table partitioning
Table partitioning in DB2 is also referred to as range partitioning or data
partitioning. This data organization scheme is one in which table data is divided
across multiple storage objects that are called data partitions or ranges
according to values in one or more table columns. Each data partition is stored
separately and can be in different table spaces.

Example 2-101 shows the creation of table partitioning on DB2. The example
demonstrates the use of a “shorthand” notation that automatically generates 24
partitions of uniform size, that is, one partition for each month over a 2-year
period. The MINVALUE and MAXVALUE catch all values that fall below and above the
defined ranges.

Example 2-101 DB2 table partitioning

CREATE TABLE orders
(
l_orderkey DECIMAL(10,0) NOT NULL,
l_partkey INTEGER,
l_suppkey INTEGER,
l_linenumber INTEGER,
l_quantity DECIMAL(12,2),
l_extendedprice DECIMAL(12,2),
l_shipdate DATE
)
PARTITION BY RANGE(l_shipdate)
(STARTING MINVALUE,
 Chapter 2. Language compatibility features 127

STARTING '1/1/1992' ENDING '12/31/1993' EVERY 1 MONTH,
ENDING AT MAXVALUE);

Example 2-102 illustrates table partitioning using a longer syntax, which is
required when the partitioning key is composed of a composite column.

Example 2-102 DB2 table partitioning using manual syntax

CREATE TABLE sales
(
year INT,
month INT
)
PARTITION BY RANGE (year, month)
(STARTING FROM (2001, 1)
ENDING (2001,3) IN tbsp1,
ENDING (2001,6) IN tbsp2,
ENDING (2001,9) IN tbsp3,
ENDING (2001,12) IN tbsp4,
ENDING (2002,3) IN tbsp5,
ENDING (2002,6) IN tbsp6,
ENDING (2002,9) IN tbsp7,
ENDING AT MAXVALUE);

Oracle range partitioning is conceptually comparable to table partitioning in DB2.
The differences between them lay mainly in the syntax that is used to define how
the table is partitioned.

The equivalent code of Example 2-102 in Oracle is the range partition statement
that is shown in Example 2-103.

Example 2-103 Oracle range partitioning

CREATE TABLE sales
(
year int,
month int
)
PARTITION BY RANGE (year, month)
(PARTITION p1 VALUES LESS THAN (2002,4) tablespace tbsp1,
PARTITION p2 VALUES LESS THAN (2002,7) tablespace tbsp2,
PARTITION p3 VALUES LESS THAN (2002,10) tablespace tbsp3,
PARTITION p4 VALUES LESS THAN (2002,13) tablespace tbsp4,
PARTITION p5 VALUES LESS THAN (2003,4) tablespace tbsp5,
PARTITION p6 VALUES LESS THAN (2003,7) tablespace tbsp6,
128 Oracle to DB2 Conversion Guide: Compatibility Made Easy

PARTITION p7 VALUES LESS THAN (2003,10) tablespace tbsp7,
PARTITION p8 VALUES LESS THAN (MAXVALUE, MAXVALUE) tablespace tbsp8);

A name is given to each Oracle partition in the example; however, naming the
partitions is optional on both DB2 and Oracle. If the partition is not explicitly
named, a system name is generated by default. To name a partition, use the PART
or PARTITION keywords.

On Oracle, each partition contains values less than, and not including, the value
that defines that partition. On DB2, the values that are defined for each partition
are included within that partition.

DB2 provides a method of table partitioning that is based on a generated
expression of a column. Depending on the situation, you can use table
partitioning on a generated column in a similar way as the list partitioning
on Oracle.

Example 2-104 shows an Oracle list partitioning.

Example 2-104 Oracle list partitioning

CREATE TABLE customer
(
cust_id int,
cust_prov varchar2(2)
)
PARTITION BY LIST (cust_prov)
(PARTITION p1 VALUES ('AB', 'MB') tablespace tbsp_ab,
PARTITION p2 VALUES ('BC') tablespace tbsp_bc,
PARTITION p3 VALUES ('SA') tablespace tbsp_mb,
….
PARTITION p13 VALUES ('YT') tablespace tbsp_yt,
PARTITION p14 VALUES(DEFAULT) tablespace tbsp_remainder);

Example 2-105 shows how the Oracle list partitioning can be written as a DB2
table partitioning based on a generated column.

Example 2-105 DB2 conversion of Oracle list partition

CREATE TABLE customer
(
cust_id INT,
cust_prov CHAR(2),
cust_prov_gen GENERATED ALWAYS AS
(CASE
WHEN cust_prov = 'AB' THEN 1
 Chapter 2. Language compatibility features 129

WHEN cust_prov = 'BC' THEN 2
WHEN cust_prov = 'MB' THEN 1
WHEN cust_prov = 'SA' THEN 3
...
WHEN cust_prov = 'YT' THEN 13
ELSE 14
END)
)
IN tbsp_ab, tbsp_bc, tbsp_mb, tbsp_remainder
PARTITION BY RANGE (cust_prov_gen)
(STARTING 1 ENDING 14 EVERY 1);

In Example 2-105 on page 129, the numeric values are generated based on the
values for CUST_PROV. The numeric values populate the generated column
CUST_PROV_GEN, on which table partitioning is based.

Database partitioning
On DB2, database partitioning is one of the scalability features used to host a
large-size database in multiple partitions within and across different physical
nodes. This feature is an optional DB2 feature that is known as the Database
Partitioning Feature (DPF).

DPF is mostly used for large, data warehousing applications, although it can be
used in some types of OLTP applications. It implements a shared nothing
architecture in which every partition has its set of resources. When database
partitioning is used, the multiple database partitions appear and work together as
a single unit, This architecture allows complex data access tasks to run on
different parts of data in parallel.

When this feature is enabled, data organization is based on a hashing algorithm
that distributes table data across multiple database partitions. Each database
partition can be on a separate partition in a physical or logical machine. Data is
hashed according to a distribution key that is either explicitly defined in the table
using the DISTRIBUTE BY HASH clause, or defaults to the first qualified column.
Ideally, a distribution key is chosen that can hash the table data evenly across all
database partitions.
130 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Table 2-8 summarizes the differences between the Oracle and DB2
partitioning methods.

Table 2-8 Mapping Oracle data organization schemes to DB2

Example 2-106 shows a table that is defined when database partitioning is used.

Example 2-106 Define a table in a partitioned database

CREATE TABLE partition_table
(partition_date date NOT NULL,
partition_data VARCHAR(20) NOT NULL
)
IN tbsp_parts
DISTRIBUTE BY HASH (partition_date);

The DISTRIBUTE BY HASH clause of a table is used only in a multiple partitioned
database environment. To partition data in a single partitioned database
environment, table partitioning or multidimensional clustering organization is
used. Hash partitioning on Oracle is done in a single database environment.

Oracle partitioning DB2 data organization Oracle 10g syntax DB2 syntax

No equivalent Round-robin None Default: Occurs
automatically on a
single partition
database

Range partitioning Table partitioning PARTITION BY RANGE PARTITION BY RANGE

Hash partitioning Database partitioning PARTITION BY HASH DISTRIBUTE BY HASH

List partitioning Table partitioning with
generated column

PARTITION BY LIST PARTITION BY RANGE

Composite partitioning:
Hash-range
Hash-list

Combination of
database partitioning,
table partitioning, and
multi-dimensional
clustering

PARTITION BY RANGE,
SUBPPARTITION BY
HASH, and
SUBPARTITION BY LIST

DISTRIBUTE BY HASH,
PARTITION BY RANGE,
and ORGANIZE BY
DIMENSIONS

No equivalent Multidimensional
clustering

None ORGANIZE BY
DIMENSIONS
 Chapter 2. Language compatibility features 131

Example 2-107 shows an example of how hash partitioning syntax on Oracle
compares to DB2.

Example 2-107 Oracle hash partitioning

CREATE TABLE hash_table
(
hash_part date,
hash_data varchar2(20)
)
PARTITION BY HASH(hash_part)
(partition p1 tablespace tbsp1,
partition p2 tablespace tbsp2
);

Multidimensional clustering
Multidimensional clustering, also known as an MDC table, is a method of data
organization that clusters data together on disk according to multiple dimension
key values. A dimension is a key, such as product, time period, or geography,
used to group factual data into a meaningful way for a particular application.

A dimension can consist of a composite of two or more columns. A desirable
characteristic of dimension values is that they have low cardinality and consist of
a minimal number of unique values.

Example 2-108 is an example of an MDC table definition.

Example 2-108 MDC table definition

CREATE TABLE sales
(
store INT NOT NULL,
sku INT NOT NULL,
division INT NOT NULL,
quantity INT NOT NULL
)
ORGANIZE BY DIMENSIONS (store, sku);

In Example 2-108, a table is created with the specification that division and
quantity are organized by two dimensions, STORE and SKU. All data in the table is
stored on disk in data blocks that are organized by the STORE and SKU values.
Each block on disk contains only rows of data based on a unique set of
dimension values.
132 Oracle to DB2 Conversion Guide: Compatibility Made Easy

When dimension keys are used as predicates in the WHERE clause of a SELECT
statement, query performance is usually greatly improved because many rows
are retrieved with fewer I/Os. In addition, performance benefits are gained from
the smaller block index that is used with MDC tables. Because all rows in a block
are referenced by the same dimensions, only one index entry per dimension is
required to locate all the rows in that block.

Oracle does not have a data organization scheme that is similar to the
MDC table.

Combining methods of data organization
Just as Oracle has composite partitioning, various data organization schemes
can be combined in DB2:

� Database partitioning with a sublevel of table partitioning

� Database partitioning with a sublevel of MDC data organization

� Database partitioning with a sublevel of table partitioning followed by a
sublevel of MDC data organization

� Table partitioning with a sublevel of MDC data organization

Example 2-109 shows an example of combining database partitioning, table
partitioning, and MDC organization.

Example 2-109 Combining database partitioning, table partitioning, and MDC

CREATE TABLE orders
(
order_id INTEGER,
ship_date DATE,
region SMALLINT,
category SMALLINT
)
IN tbsp1, tbsp2, tbsp3, tbsp4
DISTRIBUTE BY HASH (order_id)
PARTITION BY RANGE (ship_date)
(STARTING FROM ('01-01-2005') ENDING ('12-31-2006') EVERY (1 MONTH))
ORGANIZE BY DIMENSION (region, category);

In Example 2-109, the data is distributed over multiple database partitions using
a hashed value of ORDER_ID. Within each database partition, the table is
partitioned by the SHIP_DATE month, and within each table partition the data is
organized in blocks by the dimensions REGION and CATEGORY.
 Chapter 2. Language compatibility features 133

On Oracle, composite partitioning is used to combine the following types of
partitioning methods:

� Range partitioning with hash subpartitioning
� Range partitioning with list subpartitioning

The composite partitioning on Oracle is used when the partitioning by a range
alone does not provide enough granularity for managing a partition. On DB2, you
can use a composite column as a range partitioning key to break down a table
partition into smaller units. The range partition key is defined by the PARTITION BY
RANGE clause, as shown in Example 2-110.

Example 2-110 Using PARTITION BY RANGE clause

CREATE TABLE sales
(
year INT,
month INT
)
IN tbsp1, tbsp2, tbsp3, tbsp4, tbsp5, tbsp6, tbsp7, tbsp8
PARTITION BY RANGE (year, month) …

If adding a secondary column to the partitioning key is not possible, then use a
generated column to complete the composite column.

Rolling in and rolling out of data
DB2 supports attaching a new partition to an existing partitioned table (roll in)
and the detaching of a partitioned table into a single table (roll out). This
functionality is achieved by using the ATTACH PARTITION and DETACH PARTITION
clauses of the ALTER TABLE statement. By attaching a new partition to a table, you
facilitate the adding of a new range of data to a partitioned table. A new
partitioned range can be added anywhere in the table, and not only to the high
end of the table.

To attach a partition, the data is loaded into a newly created table and then that
table is attached to the existing partitioned table. Example 2-111 shows the
newly created table DEC03 that is loaded with data rolled into the partitioned
table STOCK.

Example 2-111 Roll in

ALTER TABLE stock ATTACH PARTITION dec03
STARTING FROM '12/01/2003' ENDING AT '12/31/2003'
FROM dec03;
COMMIT WORK ;
134 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The new table that is attached must match the existing table in several ways, that
is, the source and target tables must match in column order and definitions,
default values, nullability, compression, and table space types used.

When a source is newly attached, it is offline and remains offline until the SET
INTEGRITY statement is executed. The following example shows the SET
INTEGRITY statement:

SET INTEGRITY FOR stock ALLOW WRITE ACCESS
IMMEDIATE CHECKED FOR EXCEPTION IN stock USE stock_ex;
COMMIT WORK;

SET INTEGRITY validates the data in the newly attached data partition. The COMMIT
WORK elements are needed to end the transaction and to make the table available
for use.

In a similar way, an existing table can have a partition that is detached into a
separate table by using the ALTER statement:

ALTER TABLE stock DETACH PART dec01 INTO stock_drop;
DROP TABLE stock_drop;

In addition, you can modify partitioned tables using the ADD PARTITION and DROP
PARTITION options of the ALTER TABLE statement. Use the ADD PARTITION clause
to add an empty partition with a new range to an existing partitioned table. After it
is added, load the partitioned table with data.

Oracle flashback-archive
DB2 10.1 introduces temporal tables or Time Travel Query. This feature matches
(and exceeds) the Oracle flashback-archive feature. Temporal tables allow the
database to manage data change history (also called data versioning).

The processes of setting up the Oracle flashback-archive and DB2 temporal
tables features are different. However, if your application uses Oracle
flashback-enabled queries, such as the SELECT ... AS OF... / VERSIONS
BETWEEN... syntax, you can migrate this feature in DB2 with minor changes.

You can transparently enable temporal behavior for regular queries to retrieve
data as of a given moment in time. This behavior can be useful when you are
working with prepackaged or compiled applications, such as reporting tools that
are unaware of temporal features.

Use the following syntax to set or clear the temporal parameter in the
current session:

SET CURRENT TEMPORAL SYSTEM_TIME = <timestamp> | NULL
SET CURRENT TEMPORAL BUSINESS_TIME = <timestamp> | NULL
 Chapter 2. Language compatibility features 135

When used with the CONNECT_PROC database parameter, you can set the temporal
parameters in the current session based on the distinct session parameters,
such as user name. These parameters allow transparent shifting of reporting
applications back in time and allow you to build reports as they were built in past.
Web applications can also benefit from this feature to implement site versioning
to timeline features without the need to change the existing code. When those
parameters are not null, the client cannot change the temporal data. Thus, the
application cannot change the historic data by mistake.

DB2 offers more flexibility in dealing with data versioning. When migrating Oracle
flashback-enabled queries to DB2, you can choose between the system-period
or application-period temporal tables. In each case Oracle flashback clause
enabled queries can be translated, as shown in Example 2-112 through
Example 2-119 on page 142.

Example 2-112 Oracle flashback AS OF query type sample

SELECT salary FROM employees
AS OF ‘2011-02-28-09.10.12.64’

WHERE last_name = 'Smith'

Example 2-113 DB2 version of the above Oracle query example for System-period case

SELECT salary FROM employees
FOR SYSTEM_TIME AS OF ‘2011-02-28-09.10.12.64’

WHERE last_name = 'Smith'

Example 2-114 DB2 version of the above Oracle query for Application-period case

SELECT salary FROM employees
FOR BUSINESS_TIME AS OF ‘2011-02-28-09.10.12.64’
WHERE last_name = 'Smith'

For more information about DB2 Time Travel Queries, go to the
following address:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.ad
min.dbobj.doc/doc/c0058476.html

Indexes on partitioned tables
Partitioned tables in both Oracle and DB2 can have indexes that are partitioned
(local), non-partitioned (global), or a combination of these two options.
136 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.dbobj.doc/doc/c0058476.html

A non-partitioned index is a single index object that refers to all rows in a
partitioned table. In DB2, non-partitioned indexes are always created as
independent index objects in a single table space, even if the table data partitions
span multiple table spaces.

A partitioned index is made up of a set of index partitions, each of which contains
the index entries for a single data partition. Each index partition contains
references only to data in its corresponding data partition. In DB2, both
system-generated and user-generated indexes can be partitioned.

In some situations, such as when you perform roll-in operations with partitioned
tables, the partitioned indexes are more efficient (less time and resource
consuming) than the non-partitioned indexes.

You can find more details about the indexes on partitioned tables and the related
topics in the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.admin.dbobj.doc/doc/c0055328.html

2.2.11 Oracle database links

A table that is in another database can be accessed as a local table through the
features that are delivered by the database management systems. In Oracle, the
database links provide this capability, while in DB2, the Homogeneous
Federation Feature delivers the ability to access database objects in different
DB2 data servers.

You can have unified access to the data managed by multiple data servers,
including DB2 (mainframe and distributed) and Informix with DB2 Homogeneous
Federation Feature. These features allow applications to access and integrate
diverse data (mainframe and distributed) as though they were a DB2 table,
regardless of where the information is, while they retain the autonomy and
integrity of the data sources. The InfoSphere Federation Server adds to the
Homogeneous Federation Feature to expand the choice of data sources to any
data, including database management systems on various platforms, flat files,
Excel, rich media, emails, XML, and LDAP. This method is an alternative one for
moving data from an Oracle database to DB2.

For more information about InfoSphere Federation Server, see:

http://www.ibm.com/software/data/integration/support/federation_server/
 Chapter 2. Language compatibility features 137

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.dbobj.doc/doc/c0055328.html
http://www.ibm.com/software/data/integration/support/federation_server/

Setting up federated databases
The following example joins the LOCAL_DEPARTMENT table in the DB2_EMP
database with the EMPLOYEE table in database SAMPLE. Because the query is
executed on DB2_EMP, it is the federated server.

To set up a federated database, complete the following steps:

1. Enable the Federation feature.

The Federation feature is enabled by setting the DB2 database manager
configuration (DBM CFG) parameter FEDERATED to YES on the federated
server. You can check and set the value, as shown in Example 2-115.

Example 2-115 Enabling the Federation feature

/WORK # db2 get dbm cfg |grep "Federated Database"
Federated Database System Support (FEDERATED) = NO
/WORK # db2 update dbm cfg using federated yes immediate
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command
completed
successfully.
/WORK # db2 get dbm cfg |grep "Federated Database"
Federated Database System Support (FEDERATED) = YES

After the FEDERATED value in DBM CFG is changed, it is applied after you
restart the database server, as shown in Example 2-116.

Example 2-116 Restart the server

/WORK # db2stop force
02/14/2007 10:09:04 0 0 SQL1064N DB2STOP processing was
successful.
SQL1064N DB2STOP processing was successful.
/WORK # db2start
02/14/2007 10:09:08 0 0 SQL1063N DB2START processing was
successful.
244 Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows
SQL1063N DB2START processing was successful.

2. Configure the component that is required to federate the table in another
database:

WRAPPER A mechanism by which a federated server can interact
with certain types of data sources. In our example, we
create a wrapper for the SAMPLE database from
DB2_EMP. You can check the data source from the
catalog view SYSCAT.WRAPPERS.
138 Oracle to DB2 Conversion Guide: Compatibility Made Easy

SERVER A data source to a federated database. In our
example, the data source is the SAMPLE database
(see SYSCAT.SERVERS).

USER MAPPING Definition of mapping between an authorization ID that
uses a federated database and the authorization ID
and password to use at a specified data source.

Example 2-117 shows the fed_config.db2 script, which is used to set up the
federated system.

Example 2-117 The fed_config.db2 script

--
-- create wrapper, server and user mapping
--
--Create wrapper;
CREATE WRAPPER net8;
--
SELECT * FROM syscat.wrappers;
--Create databasse server definition
--You need the node_name from your tnsnames.ora file
CREATE SERVER fedserver type oracle version 8.1.7
WRAPPER net8
OPTIONS (NODE 'node_name');
--
SELECT * FROM syscat.servers
-- Map user
CREATE USER MAPPING FOR USER
SERVER fedserver
OPTIONS(REMOTE_AUTHID 'orausr', REMOTE_PASSWORD 'orausr');
--
SELECT * FROM syscat.usermappings;

Use the following command to execute the script:

/WORK # db2 -tf fed_config.db2

You can see the registered federation values in the result of the selection from
the system catalog tables.

Accessing the remote table
After you configure the federation server, you can access the remote Oracle
tables by using the Oracle database link syntax:

SELECT employee_id, last_name FROM hr.employees@fedserver;
 Chapter 2. Language compatibility features 139

For your existing PL/SQL code, that means that you do not have to change your
calls to tables in remote databases anymore. This mechanism even works when
you convert your remote database to DB2: You define a different wrapper, server,
and user mapping for your remote DB2 database.

2.2.12 Oracle Data Dictionary compatible views

It is common for database administrators to have administrative scripts to retrieve
information about Data Dictionary objects. It is also common to have application
logic that is incorporated in PL/SQL code that retrieves Data Dictionary
information.

DB2 provides a set of view definitions that mimic the most commonly used views
from the Oracle Data Dictionary. More than 100 mapped views of Oracle,
covering USER_*, ALL_*, and DBA_* views, are available with identical or
close definitions.

In DB2, the system view DICTIONARY contains the names, schema, and
description of Data Dictionary. Querying the system view DICT_COLUMNS
returns the column names of each of the new dictionary views.

Table 2-9 lists the DB2 supported Data Dictionary views. The * notation applies
to prefix DBA, USER, and ALL in front of each name.

Table 2-9 Oracle dictionary view supported in DB2

Category View

General � *_CATALOG
� *_DEPENDENCIES
� *_OBJECTS
� *_SEQUENCES
� DBA/USER_TABLESPACES
� DICTIONARY
� DICT_COLUMNS
140 Oracle to DB2 Conversion Guide: Compatibility Made Easy

From the application’s stand point, all these views can be referenced in the SQL
and PL/SQL code, as shown in Example 2-118. The code snippet shows a part
of a procedure that gathers information, such as owner, object name, and object
type, about all invalid objects in a schema. The string can be used later for
recompiling, sending an email notification, and other maintenance operations.

Example 2-118 Using Data Dictionary views in a PL/SQL procedure

CREATE OR REPLACE PROCEDURE Recompile_invalid_objects
 (existing_invalid_objects OUT VARCHAR2,
 in_owner IN VARCHAR2 DEFAULT NULL)
IS
 v_owner VARCHAR2(20) := NVL (UPPER (in_owner), 'APP');
BEGIN
 FOR invalid_objects_list IN (

Tables/View � *_COL_COMMENTS
� *_CONSTRAINTS
� *_CONS_COLUMNS
� *_INDEXES
� *_IND_COLUMNS
� *_PART_TABLES
� *_PART_KEY_COLUMNS
� *_SYNONYMS
� *_TABLES
� *_TAB_COL_STATISTICS
� *_TAB_COLUMNS
� *_TAB_COMMENTS
� *_TAB_PARTITIONS
� *_VIEWS
� *_VIEW_COLUMNS

Programming
objects

� *_PROCEDURES
� *_SOURCE
� *_TRIGGERS
� *_ERRORS

Security � DBA/USER_ROLE_PRIVS, ROLE_ROLE_PRIVS,
SESSION_ROLES

� DBA/USER_SYS_PRIVS, ROLE_SYS_PRIVS,
SESSION_PRIVS

� *_TAB_PRIVS, ROLE_TAB_PRIVS
� ALL/USER_TAB_PRIVS_MADE
� ALL/USER_TAB_PRIVS_RECD
� DBA_USERS
� DBA_ROLES

Category View
 Chapter 2. Language compatibility features 141

 SELECT owner,
 object_name,
 object_type
 FROM all_objects
 WHERE owner = DECODE (v_owner, 'ALL', owner, v_owner)
 AND owner NOT IN ('SYSTEM', 'SYS')
 AND status = 'INVALID'
 ORDER BY owner, object_name, object_type)
 LOOP
 existing_invalid_objects := existing_invalid_objects
 || CHR(10)
 || RPAD (TRIM (invalid_objects_list.owner), 13)
 || RPAD (TRIM (invalid_objects_list.object_name), 31)
 || RPAD (TRIM (invalid_objects_list.object_type), 18);
 END LOOP;
END;
/

Example 2-119 loops through the source code for database objects that are
stored in the ALL_SOURCE Data Dictionary view. The application code prepares
an SQL statement later for a dynamic execution that is based on object name
and owner.

Example 2-119 Using ALL_SOURCE view

FOR get_source_info IN
 (SELECT owner, name, type, text
 FROM all_source
 WHERE owner = DECODE (v_owner, NULL, owner, v_owner)
 AND name = DECODE (v_name , NULL, name, v_name)
 ORDER BY owner, name, type
)
 LOOP
…
END LOOP;

Oracle also provides dynamic performance views that are updated dynamically
by the Oracle instance with performance data. Dynamic performance views are
prefixed with V_$ and have public synonyms that are created with the V$ prefix.
These views are used by database administrators to monitor the database, and
track cumulative information since startup. They are also sometime used in the
application code to provide information about the database instance and
contribute to the programming logic. Examples of such views are V$INSTANCE,
V$DATABASE, V$TABLESPACE, V$DATAFILE, and V$LOCK.
142 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The Oracle dynamic performance views are part of the dictionary. It is a concept
similar to the DB2 catalog views that are based on SYSIBM tables.

The DB2 SQL administrative views and routines provide an easy-to-use
programmatic interface to the DB2 admin functionality through a construct that
could be used in SQL PL. They encompass a collection of built-in views, table
functions, procedures, and scalar functions for performing various administrative
tasks, such as reorganizing a table, capturing and retrieving monitor data, and
retrieving the application ID of the current connection.

These routines and views can be started from an SQL-based application, a
command line, or a command script.

The DB2 administrative views can be considered equivalent to the V$ views in
Oracle. Although the information provided by the V$ views and the administrative
views cannot be the same, the information is common, and both return
dynamic data.

For example, to obtain information about applications that are connected to the
database form Oracle V$ views, use the following query:

SELECT * FROM V$SESSION

An equivalent query to query data from DB2 administrative views is:

SELECT * FROM TABLE (SNAP_GET_APPL(CAST(NULL AS VARCHAR(128)),-1)) AS T

There are certain views that are useful. One useful view is
SYSENV_SYS_RESOURCES, which provides system information, such as
memory, processor, operating system, and host information. ENV_INST_INFO
returns information about the current instance. The APPLICATIONS view returns
information about connected applications. The DBCFG and DBMCFG views
return information about database configuration and database
manager configurations.

Table 2-10 shows some of the V$ views and the equivalent administrative views
or table functions.

Table 2-10 Oracle V$ views and DB2 administrative views and table functions

Oracle DB2

V$INSTANCE SNAPDBM administrative view
or
SNAP_GET_DBM table function

V$DATABASE SNAPDB administrative view
or
SNAP_GET_DB_V91 table function
 Chapter 2. Language compatibility features 143

The Snapshot administrative views or equivalent table functions are made
monitoring simpler by providing access to monitoring information using SQL. In
particular, from a database administrator's point of view, a common task is to
gather continuous information about the system so that the overall state of the
system is better known. In this regard, SYSIBMADM.SNAPDB,
SYSIBMADM.SNAPAPPL, and SYSIBMADM.SNAPSTMT are useful. A
database administrator who administers the Oracle database on a continuous
basis can do the same in DB2 by building a script that periodically refreshes a set
of user tables from the three administrative views. The DBA can then later query
against these tables to generate trend usage, and use that data to maintain
complete control over the system.

In DB2, you can use the MON_GET_PKG_CACHE_STMT table function in a
script to help monitoring.

V$TABLESPACE SNAPTBSP administrative view
or
SNAP_GET_TBSP_V91 table function

V$DATAFILE SNAPCONTAINER administrative view
or
SNAP_GET_CONTAINER_V91 table function

V$SESSION SNAPAPPL administrative view
or
SNAP_GET_APPL table function

V$SQLTEXT SNAPSTMT administrative view
or
SNAP_GET_STMT table function

V$LOCK SNAPLOCK administrative view
or
SNAP_GET_LOCK table function

V$SYSSTAT
(information for data buffer)

SNAPBP administrative view
or
SNAP_GET_BP table function

V$SESSION_LONGOPS LONG_RUNNING_SQL administrative view

Note: The administrative views are cataloged in the SYSIBMADM schema,
and the table functions are cataloged in the SYSPROC schema. The SELECT
privilege is required to access these objects.

Oracle DB2
144 Oracle to DB2 Conversion Guide: Compatibility Made Easy

For more information about DB2 administrative views and table functions, see
Administrative SQL Routines and Views, SC10-4293.

2.3 DB2 command-line utilities

DB2 provides the following command-line tools:

� The traditional command line processor (CLP)
� The complementary command line processor plus (CLPPlus)

The DB2 CLP is the command-line interface that interacts with a DB2 server. You
can use it to connect to databases, run database utilities, issue SQL statements,
run scripts, or run the DB2 commands to manage your databases. Similar to
CLP, CLPPlus offers support for many commands that are provided by the Oracle
SQL*PLUS command-line utility.

2.3.1 The command line processor plus user interface

CLPPlus is a command-line user interface that provides a complement to the
functionality provided by the CLP. It offers advanced options, including
developing and editing database objects using an SQL buffer, calling operating
system and database management commands, compiling and running
procedures, functions and packages, creating and formatting SQL type reports
from the command line, and so on.

CLPPlus is compatible with the Oracle SQL*Plus utility. CLPPlus is designed as
an advanced command-line tool that provides compatibility for DBAs and
application developers who have grown accustomed to the Oracle SQL*Plus
interface. In this case, you might prefer using the DB2 CLPPlus interface when
you work with DB2 databases. You find many familiar options, such as output
formatting and developing in the SQL buffer. You can run a SQL*Plus script that
is taken from Oracle in the DB2 CLPPLus with little or no modification.

To start CLPPlus, enter clpplus from the Windows command prompt or UNIX
shell prompt.

In a Windows operating systems environment, you can also start CLPPLus by
clicking Start  All Programs  IBM DB2, select your DB2 copy, and click
Command Line Tools  Command Line Processor Plus.
 Chapter 2. Language compatibility features 145

Figure 2-6 shows DB2 CLPPlus in a Windows environment.

Figure 2-6 DB2 CLPPlus

Inside CLPPlus, you can run both operating system and database commands. To
run the operating system commands, place the HOST operator in front of them.
For example, if you were running on UNIX and you wanted to verify the existence
of the plsql.txt file in your current directory, simply run:

SQL> HOST ls | grep plsql.txt

As an example on a Windows system, from within CLPPlus, you can run the HOST
command followed by the ipconfig command to display the Windows IP
configuration as follows:

SQL> HOST ipconfig

CLPPlus can connect to any DB2 database without the need to catalog the
database before connecting. Use the data server host name, port number, and
database name along with your user credentials.
146 Oracle to DB2 Conversion Guide: Compatibility Made Easy

In Figure 2-7, user DB2ADMIN connects to a local database named SAMPLE
that is listening on port 50000. To disconnect from the database, use the
disconnect command.

Figure 2-7 Connecting to and disconnecting from a database in CLPPLus

Working with the SQL buffer is an essential part of the CLPPlus functionality. The
SQL buffer is an “in memory” working area where CLPPlus keeps a copy of the
most recently entered SQL statement or PL/SQL block. CLPPlus provides many
commands to help manage the SQL buffer.

In Figure 2-8 on page 148, first load some PL/SQL code that is stored in a file
using the GET command. Then, run this code straight from the buffer with the RUN
command. For testing purposes, this example uses a code sample that has a
syntax error in it to show how CLPPlus can help manage debugging and
execution of database code. In this case, the RUN command fails with a syntax
error that is properly displayed in the CLPPlus editor. (There is no space between
the FROM clause and the table name.)
 Chapter 2. Language compatibility features 147

Figure 2-8 Working with the SQL buffer - GET, RUN, and EDIT commands

To fix the intentional error, edit the code using the EDIT command. With the EDIT
command, the buffer content is displayed in the preferred text editor (in this case,
Notepad). You can correct the error and save the changes, as shown in
Figure 2-9.

Figure 2-9 Editing the code

After the error is corrected (by adding space between the FROM clause and the
table name), the SQL buffer is updated with the new version of the SQL script.
The script is then ready to be used after you close the text editor. If you run the
script again, the query succeeds and displays the result set in the
CLPPlus window.
148 Oracle to DB2 Conversion Guide: Compatibility Made Easy

You can execute the PL/SQL procedures in CLPPlus by using the EXECUTE
command. Example 2-120 shows a simple PL/SQL procedure that is saved in
the example.sql file.

Example 2-120 Sample procedure

CREATE OR REPLACE PROCEDURE sp_test_execute_command
(p_first_id IN NUMBER)
IS
BEGIN
 IF p_first_id IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('Number ' || p_first_id || ' is displayed.');
 END IF;
END;
 /

Figure 2-10 demonstrates two ways of running a PL/SQL procedure in
CLPPLUS. Because the procedure uses the DBMS_OUTPUT built-in package to
display messages to the user, before you run it, you must set SERVEROUTPUT ON to
see these messages. First, check for the current setting of the SERVEROUTPUT
parameter using the SHOW command. Then, set it to ON.

Figure 2-10 Executing PL/SQL procedure in CLPPlus

To execute the procedure, run the EXECUTE command followed by the procedure
name and enter a parameter of 100. Because CLPPlus provides high-level
compatibility, using the DB2 CALL statement to run the PL/SQL procedure
produces the same result, as demonstrated in the second call to this procedure
using a parameter of 200.
 Chapter 2. Language compatibility features 149

As shown in Figure 2-10 on page 149, you can use the DB2 syntax to call
PL/SQL procedures in CLPPlus, and you also can create and run SQL PL
procedures in CLPPlus. Support for SQL PL is another significant advantage of
CLPPlus. In Figure 2-11, you create a SQL PL procedure using the OUT
parameter in the SAMPLE database, call it, and display the output parameter in
DB2 style. The result is the same as the CLP provides.

Figure 2-11 Executing the SQL PL procedure with OUT parameters in CLPPlus

CLPPlus also provides numerous options for producing formatted reports
dynamically. The query that is shown in Figure 2-12 on page 151 displays
information about five employees with selected employee numbers. The output of
this query, also shown in Figure 2-12 on page 151, is wrapped, not properly
formatted (for example, the money fields do not have a currency sign) and, in
general, is hard to read.
150 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Figure 2-12 Formatting in CLPPLus - part 1

Using the rich pallet of formatting options that are offered by CLPPlus, you can
improve the appearance of this result set by changing the output settings and
using the column formatting options.
 Chapter 2. Language compatibility features 151

In Figure 2-13, first check for the current settings by running the SHOW command.
Then, provide new values for the output-related parameters with the SET
command. The figure also shows how long it took to execute this query by
running the SET TIMING ON command.

Increase the width of the output line and apply special formatting rules (dollar
notation) to the salary and bonus columns by using the COLUMN FORMAT
command. Additionally, using the HEADING command, we select new titles for the
columns, such as lastname or firstname, to make them more meaningful to the
user, and we add an alternative name to the salary column. The query now
produces a well-formatted, more meaningful output and displays the
execution time.

Figure 2-13 Formatting in CLPPLus - part 2
152 Oracle to DB2 Conversion Guide: Compatibility Made Easy

CLPPlus is a powerful and functionally rich command-line interface that provides
a robust and simple environment for DBAs and application developers for ad hoc
SQL and PL/SQL prototyping, development, scripting, and reporting. CLPPlus is
also a first-class tool to help migration and ongoing maintenance that requires
only a minimal investment in skill transfer.

To discover more about the CLPPlus command utility, go to the DB2 Information
Center at the following website:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm
.swg.im.dbclient.clpplus.doc/doc/c0056269.html

2.3.2 Using the DB2 command line processor

The DB2 command line processor (CLP) is a basic DB2 command tool with which
most DB2 database administrators and developers are familiar. You use the CLP
to run database utilities, SQL statements, and online help. It offers various
command options. You can start the tool in interactive input mode, command
mode, and batch mode.

From the enablement standpoint, you can use the CLP to run conversion scripts.
The scripts can contain the definition of database objects, such as DDL, DML,
and PL/SQL You can also include data movement commands, such as IMPORT or
LOAD.

To start the CLP in a Windows operating system environment, click Start  All
Programs  IBM DB2 select your DB2 copy, and click Command Line
Tools  Command Line Processor. Another way to start the CLP is to select
Start  Run and enter the db2cmd command at the command-line prompt.
 Chapter 2. Language compatibility features 153

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.swg.im.dbclient.clpplus.doc/doc/c0056269.html

Figure 2-14 shows the DB2 CLP in a Windows operating system environment.

Figure 2-14 DB2 CLP

In a Linux or UNIX operating system environment, you can start the CLP by
running db2. You also can run a statement directly on the operating system
prompt by adding the db2 prefix to the statement.

Run the DB2 SQL scripts by using the following flags:

db2 -tvf <scriptName>

Where

� The -t flag tells the CLP to use a semicolon (;) as the statement
termination character.

� The -v flag stands for verbose so that the statements display before
being executed.

� The -f flag tells DB2 that the next parameter is a script file name to execute.
154 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Example 2-121 shows how to run a script to create a table using the CLP.

Example 2-121 Running a procedure with the CLP

db2inst1> cat sample_script1.sql

CREATE TABLE simple1
(id NUMBER(8),
 name VARCHAR2(40)
)
;

db2inst1> db2 -tvf sample_script1.sql
CREATE TABLE simple1 (id NUMBER(8) , name VARCHAR2(40))
DB20000I The SQL command completed successfully.

SQLCOMPAT mode
When you execute scripts using the db2 command with the -t flag, the default
statement terminator is a semicolon (alternative terminators can be specified).
Oracle uses the forward slash (“/”) as the default statement terminator. To
enhance compatibility and allow scripts that were written for Oracle and
containing forward slashes to run seamlessly in DB2, you can use the -td option
to tell the CLP to use a different statement terminator. For example, to use the
forward-slash (/) as the statement terminator, run:

db2 -td/ -vf <scriptName>

Example 2-122 shows how to run a script with a forward slash using the -td
command-line option.

Example 2-122 Script using forward-slash as the statement terminator

db2inst1> cat sample_create_proc.sql
CREATE TABLE "ACCOUNTS" (
 "ACCT_ID" NUMBER(31) NOT NULL,
 "DEPT_CODE" CHAR(3) NOT NULL,
 "ACCT_DESC" VARCHAR2(2000),
 "MAX_EMPLOYEES" NUMBER(3),
 "CURRENT_EMPLOYEES" NUMBER(3),
 "NUM_PROJECTS" NUMBER(1),
 "CREATE_DATE" DATE DEFAULT SYSDATE,
 "CLOSED_DATE" DATE DEFAULT SYSDATE+1 year)
/
CREATE OR REPLACE PACKAGE Account_Package AS
 TYPE customer_name_cache IS TABLE OF Employees%ROWTYPE INDEX BY PLS_INTEGER;
 PROCEDURE Account_List(p_dept_code IN accounts.dept_code%TYPE,
 Chapter 2. Language compatibility features 155

 p_acct_id IN accounts.acct_id%TYPE,
 p_Employees_Name_Cache OUT Customer_Name_Cache);
END Account_Package;
/

db2inst1> db2 -td/ -vf sample_create_proc.sql
CREATE TABLE "ACCOUNTS" ("ACCT_ID" NUMBER(31) NOT NULL, "DEPT_CODE" CHAR(3) NOT
 NULL, "ACCT_DESC" VARCHAR2(2000), "MAX_EMPLOYEES" NUMBER(3), "CURRENT_EMPLOYEES
" NUMBER(3), "NUM_PROJECTS" NUMBER(1), "CREATE_DATE" DATE DEFAULT SYSDATE, "CLOS
ED_DATE" DATE DEFAULT SYSDATE)
DB20000I The SQL command completed successfully.

CREATE OR REPLACE PACKAGE Account_Package AS
TYPE customer_name_cache IS TABLE OF Employees%ROWTYPE INDEX BY PLS_INTEGER;
 PROCEDURE Account_List(p_dept_code IN accounts.dept_code%TYPE,
 p_acct_id IN accounts.acct_id%TYPE);
END Account_Package;
DB20000I The SQL command completed successfully.

You can achieve the same results by changing the SQLCOMPAT mode at the
beginning of a script or by setting the SQLCOMPAT mode on the command line
before you run the script. Setting the mode on the command line before you run
the script allows you to leave the script unchanged from its Oracle origins. This
function is shown in Example 2-123, which run the script in Example 2-122 on
page 155.

Example 2-123 Executing a script in SQLCOMPAT PLSQL mode

-- To execute this script, run: db2 -tvf <scriptname>
-- Uncomment the next line or make sure to set beforehand
-- SET SQLCOMPAT PLSQL;
db2inst1> db2 SET SQLCOMPAT PLSQL
DB20000I The SET SQLCOMPAT command completed successfully.

db2inst1> db2 -tvf sample_create_proc.sql
CREATE TABLE "ACCOUNTS" ("ACCT_ID" NUMBER(31) NOT NULL, "DEPT_CODE" CHAR(3)
NOT
 NULL, "ACCT_DESC" VARCHAR2(2000), "MAX_EMPLOYEES" NUMBER(3),
"CURRENT_EMPLOYEES
" NUMBER(3), "NUM_PROJECTS" NUMBER(1), "CREATE_DATE" DATE DEFAULT SYSDATE,
"CLOS
ED_DATE" DATE DEFAULT SYSDATE)
DB20000I The SQL command completed successfully.

CREATE OR REPLACE PACKAGE Account_Package AS
TYPE customer_name_cache IS TABLE OF Employees%ROWTYPE INDEX BY PLS_INTEGER;
 PROCEDURE Account_List(p_dept_code IN accounts.dept_code%TYPE,
156 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 p_acct_id IN accounts.acct_id%TYPE);
END Account_Package;
DB20000I The SQL command completed successfully.
 Chapter 2. Language compatibility features 157

158 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Chapter 3. Conversion process and
enablement tools

Database conversion is the process of transferring data between different
storage systems, formats, or types. In simple terms, it is a technique for changing
one type of data to another type through data extraction and data loading
processes. However, depending on the programming language of the database
vendors, conversion of the syntax is also required to ensure compatibility
between the source and target database objects.

This chapter describes the conversion process according to the leading practices
that are used by IBM consultants, and examines the tools and steps that are
involved in an Oracle to IBM DB2 migration.

3

© Copyright IBM Corp. 2009, 2013. All rights reserved. 159

3.1 The conversion process

To provide the context for the description of enablement tools, it is prudent to first
give an overview of the data conversion process.

The conversion process has multiple stages that can be divided into three
broad phases:

� DDL extraction: The Data Definition Language (DDL) is the syntax for defining
and altering data structures of a database. DDL statements are used to
create, modify, and drop database objects, such as tables, indexes, users,
and routines. DDL extraction is the process of obtaining the required DDL
statements from the source database.

� Assessment and conversion: The assessment and conversion phase involves
the critical task of examining the DDL of the source database to appropriately
plan the conversion project. Traditionally, this phase involved manually
reviewing and converting thousands of DDL statements. This phase is
typically the most challenging and time consuming aspect of a database
migration. To help streamline this process, IBM offers tools such as the DCW
Compatibility Report and the DCW Auto-Convert feature, which greatly
reduce the work effort required.

� Data movement: This is the last phase of the conversion process and usually
occurs after all compatibility issues between the source and target database
objects are resolved. Data movement involves replicating the appropriate
source database objects on the target database, mapping the data from the
source database, and then migrating the data to the target database.
160 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Figure 3-1 shows a visual representation of the database conversion process
from Oracle to IBM DB2 using the IBM Database Conversion Workbench.

Figure 3-1 Database conversion process - Oracle to IBM DB2
 Chapter 3. Conversion process and enablement tools 161

3.2 Enablement tools

Traditionally, converting from one database vendor to another vendor was a
manual, difficult, and time-consuming task. But today, IBM provides a set of
enablement tools that simplify and partly automate the process. The tools make
extraction and deployment of schema definitions and data movement more
manageable, even when there are tens of thousands of DDL and
procedural objects.

This section covers the two most important enablement tools:

� IBM Data Studio: A unified software solution for database development and
administration of IBM DB2 for Linux, UNIX, and Windows

� IBM Database Conversion Workbench (DCW): A plug-in to IBM Data Studio
that combines multiple migration tools into a single, integrated environment,
providing end-to-end assistance for the entire conversion process

3.2.1 IBM Data Studio

IBM Data Studio is a comprehensive data management tool in the IBM
InfoSphere Optim family of data lifecycle tools and solutions. Based on the
Eclipse platform, Data Studio provides an integrated, modular environment for
database development and administration of DB2 for Linux, UNIX, and Windows.
It also aids in application development with support for Java, XML editors, and
other technologies. Data Studio enables heterogeneous database environments
through its support of collaborative database development tools for IBM DB2 for
z/OS, IBM DB2 for i, and IBM Informix.

Data Studio aims to support the entire database development lifecycle from
design, through implementation and application development, to change
management, administration, and maintenance.

Data Studio helps you perform many typical database development and
administration tasks:

� Create, debug, and deploy DB2 SQL PL and PL/SQL procedures, functions,
and triggers.

� Build, test, and tune queries, including access plan graphs.

� Manage database objects, analyze their dependencies, compare databases,
and generate change scripts for schema synchronization.

� Integrate database development with collaboration tools, such as software
version control systems.
162 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Complete details about Data Studio, including an option to download it at no cost,
are available at this address:

http://www-01.ibm.com/software/data/studio/

Data Studio has many advanced features that are outside the scope of this book.
The following subsection provides information about one notable feature:
creating the connection profiles that are needed to connect to the source and
target databases.

Creating connection profiles
Data Studio provides a common interface to connect to different databases. You
can create and manage multiple connection profiles for each database
connection that you subscribe to.
 Chapter 3. Conversion process and enablement tools 163

http://www-01.ibm.com/software/data/studio/

The process involves entering basic server information and user credentials to
create the connection profiles. Complete the following steps:

1. Open the Data Source Explorer view. Right-click Database Connections and
then select New. This opens the New Connection wizard, which is shown in
Figure 3-2.

Figure 3-2 New Connection wizard

2. Choose the appropriate Database Manager from the list on the left side of the
wizard window.

3. Enter the server and user credentials information in the fields on the
right side.

4. Select the correct database driver from the JDBC driver drop-down list.
164 Oracle to DB2 Conversion Guide: Compatibility Made Easy

5. Click Test Connection to confirm that your server and user credentials
are correct.

6. Click Finish to complete the process. The connection profile is stored by Data
Studio and can be accessed in the Data Source Explorer view.

3.2.2 IBM Database Conversion Workbench

The IBM Database Conversion Workbench (DCW) provides an end-to-end
solution through an integrated workbench of tools to facilitate your conversion to
DB2. DCW is a no additional charge plug-in that can be easily installed to add
database migration capabilities to Data Studio. Whether you are converting to
DB2 from another relational database management system (RDBMS) or
migrating from one version of DB2 to another version, DCW provides an
easy-to-use framework to take you through the conversion process.

DCW combines many of the tools that are used for database conversion into a
single graphical user environment and follows processes that are based on
several leading practices that are identified by IBM data migration consultants.

DCW provides the following benefits to the user:

� A common graphical interface with a uniform appearance for all phases
of conversion

� A consolidated process with defined steps that are based on leading
industry practices

� Faster data conversion by using automated tools

� Wizards that provide guidance through all the conversion steps

The conversion features in DCW can be used together to carry a user through all
of the steps of a database conversion or, if the user prefers, each of the features
can be used separately.

Note: If the driver you need is not shown in the list, you must download the
required driver and specify the path.
 Chapter 3. Conversion process and enablement tools 165

DCW offers several step-by-step functions to facilitate the conversion process:

� DCW Task Launcher: This integrated interface launches the various steps of
the conversion process. The Task Launcher contains steps which, when
clicked, launch the appropriate wizards and help topics.

� DDL Extraction: This function extracts the DDL of the objects in the source
Oracle database. DDL is used by DCW to analyze the source database and
provide compatibility assessment, conversion, and object creation on the
target DB2 database. Various methods of extraction are available.

� Compatibility Evaluation: This function provides a report of the estimated
compatibility (expressed as a percentage) of Oracle SQL and PL/SQL
statements with DB2 10.1 or DB2 10.5. It outlines the major issues with the
conversion and highlights code that must be fixed manually.

� Code Conversion: This function auto-converts known Oracle syntax to DB2
-compatible syntax. This helps streamline what can otherwise be a
long process.

� Split DDL: This function splits a single DDL file into multiple files, which are
organized by object types. This provides a more intuitive code organization by
breaking down large DDL files into smaller and more manageable
components.

� Package Visualizer: This function generates a dependency graph of objects in
the source database.

� Data Movement: This function extracts and loads data from the source Oracle
database to the target DB2 database. Various methods of extraction and
loading are available.

Installation
Installation of DCW requires a working instance of Data Studio. For instructions
about obtaining the Data Studio software, see 3.2.1, “IBM Data Studio” on
page 162.

You can download the DCW plug-in and view supported versions of Data Studio
at this address:

http://www.ibm.com/developerworks/data/ibmdcw

Note: Before preceding with a new installation of DCW, uninstall any previous
versions of DCW that are installed in your instance of Data Studio.
166 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.ibm.com/developerworks/data/ibmdcw

To install DCW, complete the following steps:

1. Extract the DCW plug-in to your chosen local directory and then add the
extracted directory to Data Studio. To so do, click Help  Install New
Software to open the Install wizard. In the wizard, click Add and select Local,
and then choose the extracted directory of the plug-in and specify a name, as
shown in Figure 3-3.

Figure 3-3 DCW installation - adding the download directory to Data Studio

Based on the directory that you selected, Data Studio automatically registers
the DCW plug-in as available for installation.
 Chapter 3. Conversion process and enablement tools 167

2. Designate the plug-in for installation by selecting the IBM Database
Conversion Workbench check box, as shown in Figure 3-4.

Figure 3-4 DCW-installation - selecting the plug-in

3. Click Next to initiate the installation. During the installation process, you are
prompted to verify the terms of the software license and acknowledge a
security warning (see Figure 3-5).

Figure 3-5 DCW installation - acknowledging the security warning
168 Oracle to DB2 Conversion Guide: Compatibility Made Easy

4. After the installation process is complete, select Finish to close the wizard.

5. Restart Data Studio to activate the newly installed DCW plug-in.

3.3 Getting started with DCW

The Database Conversion Workbench uses conversion projects to customize
and store the data that is relevant to your migration. When you select your source
and target database vendors, DCW automatically customizes your workspace
with the applicable tools. DCW manages all of the files that are related to a
migration under a single project folder, which allows you to easily manage
multiple migration projects in parallel.

3.3.1 Creating a DCW project

To create a DCW project, from Data Studio, click File  New  New DCW
Project to open the New DCW Project wizard.
 Chapter 3. Conversion process and enablement tools 169

You are prompted to specify a project name and to select the source and target
databases from the drop-down lists, as shown in Figure 3-6. For an Oracle to
DB2 migration, select Oracle as the source and the applicable DB2 database as
the target.

Figure 3-6 Creating a DCW project in the New DCW Project wizard

Views and perspectives in Data Studio
Much of your work in Data Studio is performed in views and perspectives.

Upon creation of the DCW project, you mightbe prompted to change to Data
Studio’s Database Conversion perspective if this is your first time installing DCW.
This perspective provides four major views to facilitate the conversion process:

� Project Explorer view: Lists all projects and relevant files.

� Data Source Explorer view: Lists all existing database connection profiles.

� Administration Explorer view: Lists all existing database connection profiles
and provides access to DB2 administration functions.

� Oracle to DB2 Task Launcher: Launches various wizards and help topics.
170 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Connecting to the source database
After you create the DCW project, you must create a connection profile for your
source Oracle database. To do this task, go to the Data Source Explorer view
and complete the steps in“Creating connection profiles” on page 163.

3.3.2 DCW Task Launcher

The centerpiece of DCW is the DCW Task Launcher, which provides an
easy-to-use interface to launch the various steps of the conversion process. The
task launcher is customized depending on the source and target vendors that
you selected when you created your DCW project. The task launcher starts
automatically when a new conversion project is created or it can be accessed
through the Help menu. Figure 3-7 shows the DCW Oracle to DB2
Task Launcher.

Figure 3-7 DCW Task Launcher

The task launcher provides a set of steps for your Oracle to DB2 migration.
Selecting a step launches the appropriate wizard, along with help topics that
provide step-by-step guidelines and useful hints to help your migration.

3.4 DDL extraction using DCW

The first step in any migration is DDL extraction. In this phase, the DDL of the
source Oracle database is extracted and used by DCW to analyze the existing
database objects.
 Chapter 3. Conversion process and enablement tools 171

DCW gives you two options for extracting the DDL from your source database. If
you are able to connect to your source database, DCW can extract DDL through
a connection. Alternatively, if the source database is not directly accessible
through the system where DCW is installed, you can extract DDL by running
extraction scripts manually on the source Oracle database. In both cases, DCW
either generates or runs the commands and queries that are required to create
the DDL. Both approaches use the functions of the source database and apply
industry-leading practices.

You can choose your extraction method in the DDL Extraction wizard, as shown
in Figure 3-8. The wizard can be accessed from the DCW Task Launcher or by
right-clicking your DCW project folder in the Project Explorer view and then
selecting Database Conversion  DDL Extraction.

Figure 3-8 Choosing an extraction method in the DDL Extraction wizard

3.4.1 DDL extraction using a connection

Using a connection is the recommended method of DDL extraction, provided it is
possible to directly connect to the source Oracle database through Data Studio.
This process uses the connection profile for the source Oracle database that is
created in “Connecting to the source database” on page 171.

Complete the following steps:

1. In the DDL Extraction wizard (which is accessed from the Oracle to DB2 Task
Launcher), select Extract DDL through a connection.
172 Oracle to DB2 Conversion Guide: Compatibility Made Easy

2. Choose the connection profile of the source Oracle database, as illustrated in
Figure 3-9. Click Next.

Figure 3-9 Selecting the source database connection profile
 Chapter 3. Conversion process and enablement tools 173

3. On the next page of the wizard, select the schema that you want to extract.
Only the schemas that are authorized for the user credentials that you used in
the connection profile are listed, as shown in Figure 3-10. Click Next.

Figure 3-10 Selecting a schema for extraction

Recommendation: To reduce the risk of failure, it is a good idea to
perform migrations on one schema at a time.
174 Oracle to DB2 Conversion Guide: Compatibility Made Easy

4. On the next window of the wizard, you can specify the model elements that
you want to include in your DDL script (see Figure 3-11). After you select the
elements, click Next.

Figure 3-11 Selecting model elements for the DDL script
 Chapter 3. Conversion process and enablement tools 175

5. You are now prompted to select a project directory, specify a file name for the
extracted DDL, and select a statement terminator, as shown in Figure 3-12.
The recommended statement terminator is the forward slash “/” character.
This ensures that statements with embedded semicolons are extracted.

Figure 3-12 Selecting the project directory, and so on

6. On the final window of the wizard, verify your selections and click Finish.

The extraction process generates a single SQL file containing the DDL of the
selected schemas. The directory is placed in the project directory that
you specified.
176 Oracle to DB2 Conversion Guide: Compatibility Made Easy

3.4.2 DDL extraction using a custom script

If a connection to the source Oracle database is not possible, DCW can generate
a custom DDL extraction script that, when manually run against the source
Oracle database, generates the required DDL.

To perform DDL extraction using a custom script, complete the following steps:

1. From the Oracle to DB2 Task Launcher, start the DDL Extraction wizard and
select Generate DDL Extraction Script. This launches another wizard for
generating the script (see Figure 3-13).

Figure 3-13 Generating a custom DDL extraction script

2. Follow the instructions in the wizard to specify the prefix of the DDL files to be
generated and the name and location under which to save the custom DDL
extraction script. When the wizard completes, the script is placed in the
location that you specified.

3. Run the extraction script through Oracle SQL *Plus on a machine that has
access to the source Oracle database. This generates the DDL file, which is
created in .out format and placed in the same location as the script.

Note: As a preferred practice, select the Exclude all system schemas
option to prevent the extraction of Oracle system schemas.
 Chapter 3. Conversion process and enablement tools 177

The DDL file is now generated and available for use, but you must import the file
into DCW before the rest of the migration process can proceed. This process
might require you to move the DDL files manually from your Oracle system to the
system on which DCW is installed.

3.4.3 Importing the DDL file

If you used the extraction script process to create the DLL file, or if a DDL file of
the source Oracle database already exists, you must import the DDL file into your
DCW project.

To import the file, go to the Project Explorer View, right-click the listing for your
DCW project, and then navigate to DCW Conversion  Import a DDL File. This
opens the Import wizard, where you select the extracted DDL files and specify
the destination DCW project. When the process is initiated, the DDL files are
automatically imported with a .sql extension.

This import process can be used for any external DDL file that was not extracted
by DCW.

3.5 Assessment and conversion using DCW

Often, the most challenging part of database conversion is determining whether
the source syntax is compatible with the target database and making any needed
changes. The conventional approach is to manually compare thousands of lines
of code from the source syntax against the target database. This can be a
time-consuming and complex task, and is prone to many mistakes.

To help simplify things, the IBM Database Conversion Workbench offers two key
features to help automate the process of evaluating extracted Oracle DDL code
and converting it to the corresponding DB2 equivalent. The following subsections
describe these features in detail.
178 Oracle to DB2 Conversion Guide: Compatibility Made Easy

3.5.1 Evaluating an Oracle DDL

To help in assessing your source Oracle database for DB2 compatibility, DCW
provides an Evaluate Compatibility feature that analyzes Oracle DDL and
PL/SQL statements and generates a report that describes (as a percentage) the
compatibility of the source Oracle database with DB2. The Compatibility Report
shows the total number of statements that are detected and identifies how many
of the statements have potential compatibility problems and thus require
attention. These statistics become important for accurately planning the
remainder of the conversion project.

In addition to assisting with conversion planning, the Compatibility Report also
includes details about the specific lines of code that are likely to experience
problems, and provides suggested workarounds for the DDL and
PL/SQL incompatibilities.

Generating the Compatibility Report
Like all features in DCW, the user can start the Evaluate Compatibility wizard,
which is shown in Figure 3-14, through the task launcher or by right-clicking the
listing for the DDL file in the DCW project and then selecting Database
Conversion  Evaluate Compatibility.

Figure 3-14 The Evaluate Compatibility wizard

After you open the wizard, select Oracle as the Source SQL dialect and your
DB2 version as the Target SQL dialect. Click Finish to generate the report.
 Chapter 3. Conversion process and enablement tools 179

The output of the evaluation process is not just the report but also an .xmle file,
which is the encrypted version of the report in XML format. This file is placed in
your DCW project using the format <filename>-<timestamp>_report.xmle. The
user must send the .xmle report to askdcw@ca.ibm.com, where IBM decrypts the
report and returns it to the user in HTML format.

Understanding the Compatibility Report
The DCW Compatibility Report is a comprehensive listing with multiple sections
that describe the identified database compatibility issues with different levels
of detail.

Several important terms are used in the report:

� Statement:

Any part of the SQL script that addresses a specific purpose can be referred
to as a statement. A statement can contain one or more statements within it
and can vary from a simple variable declaration to a complex Create
Table statement.

� DDL Statement:

DDL Statements include all of the Create, Alter, and Drop statements of the
Table Schema elements, such as Table, Index, Tablespace, Schema,
Synonym, Type, Sequence, and View.

� PL/SQL Statement:

Any statement that is not a DDL Statement is a PL/SQL Statement, from a
small Loop Statement to a huge Query Block. A PL/SQL statement can be
part of a DDL Statement, but a DLL Statement cannot exist within a
PL/SQL statement.

� PL/SQL Objects:

All of the declaration statements for Function, Procedure, Trigger, Package,
Package Body, and Anonymous Blocks constitute PL/SQL objects. Any
Function Declaration and Procedure Declaration statements that exist within
other statements are also considered PL/SQL objects. By definition, every
PL/SQL object is also a PL/SQL statement.

� LOC:

LOC refers to the lines of code in a statement.

Note: The .xmle file does not contain any source code. It contains only the list
of identified incompatibilities and the number of those incompatibilities in the
original source code.
180 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The Compatibility Report is divided into four sections.

� The Executive Summary is a high-level summary that cites the compatibility
percentage of all PL/SQL and DDL Statements that can run natively on a DB2
database that were enabled for Oracle compatibility.

� The Technical Summary (see Figure 3-15) breaks up the statistics across
different types of PL/SQL Objects and DDL Statements. For each type, the
report provides the total number of statements that are analyzed and the
percentage of incompatibility that is detected.

Figure 3-15 Technical Summary in a DCW Compatibility Report

Note:

� Any SQL syntax that is not recognized by DCW is not considered for
statistical calculation.

� Statements that can be successfully converted to their corresponding DB2
equivalent (using the DCW auto-conversion feature) are flagged as
compatible and are not considered in the percentage calculations
of incompatibility.
 Chapter 3. Conversion process and enablement tools 181

Figure 3-15 on page 181 shows that the Technical Summary is divided into
two sections, one for PL/SQL and the other for DDL. The PL/SQL Summary
contains statistics for PL/SQL Objects and PL/SQL Statements.

� The Detailed Technical Summary gives an intricately detailed breakdown of
the statements that were analyzed. Like the Technical Summary, this
summary also has separate sections for PL/SQL and DDL.

The PL/SQL Statistics table (Figure 3-16) and DDL Statistics table
(Figure 3-17) provide details about the total number of incompatible
statements of each type. The PL/SQL table contains counts of the lines of
code for each Object Type, whereas the DDL table shows the total count for
each type of DDL (the sum of the Create, Alter, and Drop statements).

Figure 3-16 PL/SQL Statistics table in Detailed Technical Summary

Figure 3-17 DLL Statistics table in Detailed Technical Summary
182 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Although the statistics in the tables do not contain information about
incompatibilities, they give a good estimation of the size of the
source database.

The Detailed Technical Summary also identifies any issues that require
attention, dividing them into two groups: one that lists the features that
contributed toward the reported percentage of incompatibility, and another
that is informational. The informational section lists those compatibility issues
that can be automatically repaired by DCW but are likely to still need
confirmation from the user. Both PL/SQL- and DDL-related issues are shown
in the same structure, as illustrated in Figure 3-18 and Figure 3-19.

Figure 3-18 Detailed Technical Summary that is grouped by Features

Figure 3-19 Detailed Technical Summary - DDL Features
 Chapter 3. Conversion process and enablement tools 183

You can expand or collapse each incompatible feature by clicking the
statement in the list, as shown in Figure 3-20. This expands the entry and
provides a list of all occurrences of the feature, including the line number of
problem statements in the original DDL code. The expanded entry also shows
the part of the syntax that contains the error and lists a
recommended solution.

Figure 3-20 Detailed Technical Summary Grouped By Features with Solutions

The three sections of the Compatibility Report are aimed at different audiences
and used for different purposes. The Executive Summary is intended for
management and for gauging the complexity of a migration project at a high level.
The Technical Summary helps users to create an initial sketch of their conversion
plan. The Detailed Technical Summary is intended for the users who perform the
migration tasks.

Unrecognized lines of code
There are instances when the Database Conversion Workbench is unable to
decipher parts of the source DDL. These lines of code do not contribute to the
compatibility statistics, so it is up to the user to determine whether the code is
DB2 compatible syntax. Figure 3-21 on page 185 shows a simple example of a
portion of Unrecognized Syntax.
184 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Figure 3-21 DCW Evaluation - Unrecognized Syntax

3.5.2 Converting Oracle DDL to DB2 compatible syntax

As stated earlier in this chapter, the most time-consuming part of a database
migration is the manual conversion of source syntax to compatible target syntax.
Fortunately, in addition to the DB2 to Oracle compatibility features that have
already been explained, the Database Conversion Workbench provides a
powerful tool that can auto-convert well-known Oracle syntax to DB2 -compatible
syntax even if the other features cannot. Although it is nearly impossible to
perform a complete conversion automatically, the efficiency of DCW in
generating the required DB2 -equivalent code is considered remarkable.

The user can start the Code Conversion wizard, which is shown in Figure 3-22,
through the Task Launcher or by right-clicking the listing for the source DDL file in
their DCW project and then selecting Database Conversion  Convert Code.

Figure 3-22 Code Conversion wizard
 Chapter 3. Conversion process and enablement tools 185

In the wizard, select Oracle as the Source SQL dialect and your DB2 version as
the Target SQL dialect. Click Finish to initiate the conversion and a new
converted SQL file is generated in your DCW project folder, where it exists
alongside the original SQL file.

The rules and logic of code conversions in DCW are based on field knowledge
and the leading practices that are developed by IBM consultants. It is not
possible to list all of these rules and configurations in this book. However, several
of the most important and complex conversion rules are worth explaining:

� Nested conversions:

Nested functions are not supported in DB2 but are a common practice in
Oracle. DCW unnests these functions, gives them a new name, and then
changes all of the calls to the functions to use the new name.

� Data type conversions:

Many Oracle data types are not compatible with DB2 syntax, either because
the data type is represented differently or the offset values for the arguments
of the data type are different in DB2. DCW overcomes this issue with a set of
Mapper rules for converting from Oracle to DB2 data types. The Mapper rules
are listed in Appendix B, “Data types” on page 309.

� Statement separator conversions:

DCW converts each Oracle statement separator (typically the ; or /
characters) to the @ character, which is the default separator in DB2.

Using these rules, the Code Conversion wizard performs the following actions:

� Remove code fragment: DCW comments out the Oracle clauses that are not
supported and not required on DB2. Code that is removed is tagged with the
phrase Code Fragment was removed in the converted file. Figure 3-23 shows
an example in which both the Enable Disable Clause and the Table
Compression Clause are removed.

Figure 3-23 Indication that a code fragment was removed

� Code conversion: For many Oracle statements, DCW can fully convert the
syntax to be compatible with DB2. Statements that are converted are not
flagged by DB2.
186 Oracle to DB2 Conversion Guide: Compatibility Made Easy

� Requires Attention: When DCW performs a partial conversion or when it
suspects data inconsistency because of the changes it is making, it tags the
code with the phrase Requires Attention. An example of this tagging is the
case of a data type conversion where DCW limits the precision of the
NUMBER data type to 31 (which this is the limit for DB2; Oracle may accept
higher values). Although this change allows the statement to run on DB2, it
can cause problems for any applications requiring greater precision.

Figure 3-24 illustrates another example where the MAXVALUE of a Sequence
Statement is restricted to 27 digits for DB2, whereas Oracle can accept 28. In
such cases, because of the risk of losing data, DCW tags the statement with
Requires Attention.

Figure 3-24 Indication that a statement requires attention

� Evaluation Issues: DCW highlights any statements that are identified as
potential issues in a Compatibility Report. These statements cannot be
converted automatically and so are tagged in the converted code as having a
DCW Evaluation Issue.

Figure 3-25 shows an example of the For Each statement in Before Trigger,
which is not supported in DB2 and for which there is no easy conversion.

Figure 3-25 Indication that a statement cannot be auto-converted

Reviewing the converted output
Although the DCW auto-conversion tools help streamline the code conversion
process, user input and review are still required.
 Chapter 3. Conversion process and enablement tools 187

Typically, a user must perform four actions to complete a database conversion
after the DCW auto-conversion activities are finished:

1. Target the portions of code that were not recognized or processed by DCW,
which are tagged with the phrase DCW ERROR GRAMMAR, as shown in
Figure 3-26.

These problem areas might have resulted from improperly formatted syntax
or parsing errors, or the statement might not have been recognized. You want
to investigate these parts of the code, fix any problems in your original DDL,
and then rerun the DCW conversion process.

Figure 3-26 Indication of unrecognized syntax

2. Review code that was processed but for which DCW was unable to find a
viable alternative. Search for “DCW Evaluation Issue” to locate these
statements in your converted code.

For help identifying a solution to the problem code, see the Compatibility
Report. The report is often where the issue was first listed and usually
includes recommended solutions.

3. After the unrecognized syntax and evaluation issues are resolved, search
your converted code for Code Fragment Removed, which marks statements
that were commented out by DCW. Review these sections of code to ensure
that their removal does not have negative effects on your application.

4. Finally, check the code for segments that are tagged with the phrase Requires
Attention. Such code is likely to require verification to ensure that the
conversion that was applied is valid for your application. You might need to
make adjustments to ensure that it is fully compatible with DB2.
188 Oracle to DB2 Conversion Guide: Compatibility Made Easy

3.5.3 The Split DDL function

Because code conversion is a difficult process to track and organize, DCW offers
the Split DLL function, an optional but useful feature that splits a single DDL file
into multiple files that are organized by object type. The function helps streamline
your conversion by making the code organization more intuitive. Also, by
breaking down a large DDL file into smaller and more manageable components,
multiple team members can work on different parts of the project concurrently.

Although the Split DLL function supports any type of SQL, it is a preferred
practice that it is run only after the DCW code conversion is performed. This
prevents the need to run code conversion on multiple separate files.

Complete the following steps:

1. Open the Split DLL Files wizard (see Figure 3-27) by using the task launcher
or by right-clicking the listing for the DDL file in your DCW project and then
selecting Database Conversion  Split DDL Files.

Figure 3-27 Split DDL Files wizard

2. In the wizard, designate a statement terminator. Choose the @ character for
the converted DB2 code and the / character for the source Oracle code. This
terminator determines how the file is split. Choosing the wrong terminator
results in the file being split incorrectly. Click Next.
 Chapter 3. Conversion process and enablement tools 189

3. The process creates a directory in your DCW project and puts the split files in
specific directories that are named according to the Object types, as shown in
Figure 3-28.

Figure 3-28 Directory structure organizes split files by Object type

Although splitting the DDL is an optional step, it is a useful utility that can be
applied to many processes. The DCW documentation recommends using the
Split DLL function as a way to achieve better management and understanding of
the SQL code you are converting.

3.6 Preparing your DB2 database for data movement

The final phase of the database conversion process is migrating the data from
your source Oracle database to the target DB2 database. However, before you
can begin migrating data, you must prepare the target DB2 database to accept
data. This typically involves creating the target DB2 database, and then
deploying the required DDL for data movement.
190 Oracle to DB2 Conversion Guide: Compatibility Made Easy

3.6.1 Creating the target DB2 database

Creating and setting up the target DB2 database requires manual steps that are
not supported by DCW. Details about these steps are out of the scope of this
book, but it is still useful to describe certain preferred practices regarding
the process:

� Run CREATE DATABASE on the target DB2 server to create your
target database.

� Alternatively, you can use Data Studio to create the database. For tips about
this topic, consult the contents of the Data Studio Help menu.

� You can adjust the database configuration parameters to meet your
requirements by running UPDATE DATABASE CONFIGURATION.

For more information about creating your target database, including the DB2
commands that are mentioned here, see the IBM DB2 Information Center at
this address:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp

Oracle Compatibility feature
The SQL compatibility features that are built into DB2 eliminate the need to
convert many Oracle database objects and Oracle SQL to DB2 syntax.

To enable the Oracle Compatibility feature in DB2, complete the following steps:

1. Using the DB2 command line, run db2set DB2_COMPATIBILITY_VECTOR=ORA.
This command enables the Oracle Compatibility feature.

2. Stop and restart DB2 by running db2stop and db2start.

3.6.2 Deploying the DDL objects that are required for data movement

After the source DDL is converted and all issues are resolved, you can create the
required objects on the target DB2 database by running SQL statements directly
from DCW. This action is a precondition for data movement because the target
DB2 database objects must exist before data can be mapped and migrated from
the source Oracle database.

In most cases, you must start this step by creating the required buffer pools, table
spaces, and tables. As a preferred practice, all other database objects should be
created after data movement is complete.
 Chapter 3. Conversion process and enablement tools 191

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp

Creating objects using SQL Editor
Double-clicking any SQL file in your DCW project opens the file in the SQL
Editor, as shown in Figure 3-29.

Figure 3-29 Deploying DDL files using the SQL Editor

To create objects using SQL Editor, select the target DB2 database from the
Connection drop-down list and then click Play (the green button in the upper
right line of SQL Editor). Upon initiating the process, the DDL statements are run
against the target database that you specified.

You can monitor the status and results of the statement execution on the editor’s
SQL Results tab.
192 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Creating objects by using the Run SQL Files batch function
In addition to the option of using SQL Editor, DCW offers a batch execute
function (see Figure 3-30) to run multiple SQL files at once.

To use the batch execute function, follow these steps:

1. In your DCW Project, select the SQL files that you want to run. If you are
running multiple files, select them all by holding down the Shift key while
making your selections. You can also select a folder to run all of the SQL files
that are contained within it.

2. Right-click the DDL files and then select Database Conversion  Run
SQL Files....

3. The Run SQL files wizard opens. Set the Statement delimiter to the @
character. Click Finish.

4. You are prompted to select the Connection profile of your target
DB2 database.

5. Click Finish to initiate execution of the scripts.

Figure 3-30 Deploying DDL files by using the DCW Run SQL Files feature
 Chapter 3. Conversion process and enablement tools 193

3.7 Data movement using DCW

After all of the required objects are replicated on your target DB2 database, you
can move the data from your source database to your target database. DCW
contains various data movement methods to suit your conversion needs. These
options range from manual load scripts that can be run against the target DB2
database to advanced features that can be used in environments where
databases are progressive and the downtime window is low.

DCW offers several data movement options:

� Extract and load data from flat files.
� Data movement using pipes.
� Data movement using federation.
� Data movement using IBM InfoSphere Change Data Capture.
� Manual deployment of data using scripts.

Each of these methods can be accessed through the DCW context menu
(accessible by right-clicking the listing for your DCW project or from the Task
Launcher). The next subsections describe each option. A quick reference guide
that summarizes all data movement methods is provided in 3.7.6, “Selecting the
appropriate data movement method” on page 210.

3.7.1 Data movement using flat files

A classic way to move data is by extracting it from the Oracle database to
delimited flat files and then loading it from the flat files to your target DB2
database. This is a two-part process and requires additional disk space to store
the temporary flat files.

Extracting data to flat files
To extract data, users might require certain admin privileges for the source
Oracle database. With these credentials, DCW can establish a JDBC connection
with the source database and fetch data through simple SELECT * FROM table
SQL queries. During the extraction, the load scripts for the flat files
are generated.

Note: Depending on what licenses are purchased, some of the advanced data
movement features that are described here might require additional licenses
from IBM.
194 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Complete the following steps:

1. Right-click the listing for your DCW project and select Database
Conversion  Extract Data. This opens the Extract Data to Flat Files
wizard. This wizard is also accessible from the Task Launcher.

2. Select the source Oracle database and then click Next.

3. Select the schema that you want to move and enter the output directory for
the flat files and logs (see Figure 3-31). Click Next.

Figure 3-31 Selecting schemas for movement by using the Extract Data to Flat Files
wizard
 Chapter 3. Conversion process and enablement tools 195

4. Select the tables that you want to move (see Figure 3-32) and click Next.

Figure 3-32 Selecting tables for movement in the Extract Data to Flat Files wizard

5. Specify the data movement configuration parameters. Novice users can use
the default selections. Click Next.

6. View the summary to confirm your selections and click Finish to begin
extracting the data.

The extraction log is automatically displayed in Data Studio. The data is extracted
to the directory that was specified in step 3 on page 195 using the file extension
.tables.

Note: To transfer the extracted data to a different computer, copy the specified
directory to an external storage medium.
196 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Loading data from flat files
The process of loading data from flat files is similar to that of data extraction. The
user needs LOAD privileges and DCW must be installed on the target DB2
server. The load script that was generated during the extraction process contains
the commands that must be used to load the tables that were specified. DCW
can process the script and internally run SYSPROC.ADMIN_CMD() commands to
load the data from the flat files.

Complete the following steps:

1. Right-click the listing for your DCW project and select Database
Conversion  Load Data. This opens the Load Data wizard. This wizard is
also accessible from the Task Launcher.

2. Select the target DB2 database. Click Next.

3. Select the directory location that was used while extracting the data to the flat
files. Click Next.

4. View the summary and click Finish. This initiates the deployment process.
The wizard displays a progress indicator until the process is complete.

3.7.2 Data movement using pipes

In scenarios where using a secondary staging area for temporary flat files is not
viable, DCW provides the option to use pipes instead. In this process, DCW
extracts data and loads it into the target database in a single step, without
needing to save anything in intermediate files. To use this feature, the user needs
both OS and database administrator privileges, and DCW must be installed on
the target DB2 server.

Complete the following steps:

1. Right-click the listing for the DCW project and select Database
Conversion  Move Data.... This opens the Move Data wizard. This wizard
is also accessible from the Task Launcher.

2. Select Data Movement Using Pipes to open the Data Movement Using
Pipes wizard.

3. On the first window, you can select an existing Oracle database connection,
or create a connection by clicking New....
 Chapter 3. Conversion process and enablement tools 197

4. On the second window (Figure 3-33), you can select an existing target DB2
database connection, or create a connection by clicking New....

Figure 3-33 Selecting the target DB2 database
198 Oracle to DB2 Conversion Guide: Compatibility Made Easy

5. On the third window (Figure 3-34), select the schema that you want to extract.

Figure 3-34 Selecting source schemas

6. On the fourth window (Figure 3-35), select the tables that you want to extract.

Figure 3-35 Selecting the source tables
 Chapter 3. Conversion process and enablement tools 199

7. On the fifth window (Figure 3-36), specify the data movement configuration
parameters. Novice users can use the default selections.

Figure 3-36 Specifying data movement configuration parameters

8. View the summary on the final window of the wizard and click Finish. This
starts the extraction process, during which a progress indicator is displayed.

A log of the extraction is automatically displayed in Data Studio after the process
is finished. The log is also stored in the Data Movement folder of your
DCW project.

3.7.3 Data movement using IBM InfoSphere Federation Server

DCW also supports the movement of data using DB2 federation capabilities.
DCW builds on the IBM federated solution for combining information from
multiple data sources, and uses this technology to migrate data from Oracle to
DB2. This allows for faster, more accurate, and more efficient movement of data.

Internally, DCW creates nicknames for selected tables and fetches data through
those nicknames. After the data transfer process is complete, DCW deletes all of
the nicknames and other federation objects, such as wrappers and server and
user mappings.
200 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Prerequisites
You must ensure that these prerequisites are met before continuing with this
approach to data movement:

� IBM InfoSphere Federation Server must be installed on the target DB2
system. Depending on your DB2 edition, this might require additional
licensing.

� The Oracle client software must be installed on the system hosting the target
DB2 database.

Setting up the target DB2 database for federation
The FEDERATED parameter must be enabled on the target DB2 instance before
you can move objects there. To do this by updating the database manager
configuration, complete the following steps:

1. Confirm that the target DB2 instance is started. This can be done from the
DB2 command line processor.

2. Run the following command to enable federation:

db2 update dbm cfg using federated yes

3. Restart the DB2 instance.

Federation is sometimes enabled by default. You can confirm if this occurred
from the DB2 CLP by running the following command:

db2 get database manager configuration

Configuring the Oracle client software
In order for DB2 to be able to federate with an Oracle database, Oracle Client
software must be installed. In particular, the Oracle wrapper libraries
are required.

Complete the following steps:

1. For Linux or UNIX operating systems, set the ORACLE_HOME environment
variable on your target environment.

2. Insert the ORACLE_HOME variable into the \$DB2PATH$\cfg\db2dj.ini file.

3. Set up the Oracle client configuration file tnsnames.ora (in the
="\$ORACLE_HOME$\NETWORK\ADMIN directory) by adding the following lines and
changing the specified values:

alias_name =
(DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = TCP)
 Chapter 3. Conversion process and enablement tools 201

 (HOST = oracle_host)
 (PORT = host_port)
)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = oracle_sid)
)
)

4. Test the Oracle connection by running tnsping alias_name after you connect
to the Oracle database through SQL Plus by running the following command:

sqlplus user/password@alias_name

Initiating data movement using federation
After your DB2 database is prepared for federation and Oracle client software is
installed and configured, you can initiate federation. Complete the
following steps:

1. In Project Explorer, right-click the listing for your DCW project and navigate to
Database Conversion  Move Data....

2. Select Data movement using federation. Click Finish to start the wizard.

3. Review the requirements on the first window of the wizard. Click Next.

4. Select the source Oracle database. Click Next.

5. Select the target DB2 database. Click Next.

6. On the fourth window of the wizard (Figure 3-37 on page 203), specify the
node name (alias) of the source Oracle database as it is listed in your
tnsnames.ora file and provide the user ID and password that must be used to
run the data load. Click Next.

The wizard automatically populates these fields on this window with the same
values from the source database connection profile, but you can change them
if needed.
202 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Figure 3-37 Specifying Oracle node details

7. Select the schemas that you want to move. Click Next. DCW creates
wrappers for your objects, and provides a summary.

8. Click Finish to start the data movement using federation.

3.7.4 Data movement using IBM InfoSphere Change Data Capture

For environments where databases are progressivein nature, DCW can use
InfoSphere Change Data Capture (CDC). This feature in DCW helps configure
data replication, initiate data replication, and end data replication.

The CDC feature of DCW targets the small number of tables that typically hold
most of the data. Data replication using CDC can be set up and started weeks
before the cut-over date, while your Oracle database is still in use, and the
changes are still tracked in the target DB2 database. The small amount of data in
the remaining tables can be moved at the cut-over date by using the DCW extract
and load technology.
 Chapter 3. Conversion process and enablement tools 203

Prerequisites
CDC-based data replication requires these key components:

� InfoSphere CDC license: A license is required to use the CDC software.

� Data store replication engine: This is an InfoSphere CDC process that sends
or receives replicated data. The required data store replication engine
processes on both the source and target servers are created when you install
InfoSphere CDC.

� DBMS: This is the source or target database. You can work only with
databases that are supported by InfoSphere CDC as a source for target of
replicated data.

� Data store: This is an InfoSphere CDC process on a source or target server
that accepts requests from an instance of Access Server and communicates
with the data store replication engine to initiate and manage replication
activity. Data store processes on source and target servers are created when
you install InfoSphere CDC.

� Access Server: Access Server is the server application that controls access
to your replication environment. You can have multiple instances of Access
Server in your working environment, but you can connect only to one server at
a time. For more information about installing Access Server, see Management
Console and Access Server - Installation Guide at this address:

http://pic.dhe.ibm.com/infocenter/soliddb/v6r5/index.jsp?topic=%2Fco
m.ibm.swg.im.soliddb.universalcacheuserguide.doc%2Fdoc%2Fs0009042_in
stall_configure_AS.html

In addition, the user must ensure that the following actions occurred before
initiating data replication by using CDC:

� CDC must be installed on the source and target systems.

� Access Server and the replication servers must be up and running.

� The data store must be defined.

� The source database must have logging enabled in Archive mode, and
supplemental logs must be enabled at the table and column levels.

Note: You need a separate license to install CDC. A license for CDC does not
come with DCW.
204 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://pic.dhe.ibm.com/infocenter/soliddb/v6r5/index.jsp?topic=%2Fcom.ibm.swg.im.soliddb.universalcacheuserguide.doc%2Fdoc%2Fs0009042_install_configure_AS.html

Configuring data replication
To replicate data, you must configure the data replication process. The source
and target tables must exist in their respective databases. In configuring data
replication, you must create mappings between selected source and target
tables. These mappings are identified by unique subscription names that are
used to initiate and end the process.

A subscription is a connection that is required to replicate data between a source
data store and a target data store. A subscription contains details about the data
that is being replicated and how the source data is to be applied to the target.

DCW creates subscriptions only with unique names. Editing an existing
subscription is not allowed in DCW.

To configure your data replication, complete the following steps:

1. Right-click the listing for your DCW project and select Database
Conversion  Replicate Data through CDC... to open the Task Selection
wizard. This wizard is also accessible from the Task Launcher.

2. Select Configure data replication and click Finish. This opens the
Configure data replication wizard.

3. On the first window of the wizard, make sure that you meet all the
requirements that are displayed on the first window of the wizard and
click Next.

4. In the Source field, select the connection to the source Oracle database, or
create a connection by clicking New.... Click Next.

5. In the Target field, select the connection to the target DB2 database, or create
a connection by clicking New.... Click Next.

6. In the Tables field, select the tables that will be replicated. Click Next.
 Chapter 3. Conversion process and enablement tools 205

7. On the Subscription Details window (Figure 3-38), specify the Access Server
Details (host name, port, user, and password) and replication agent names.
Provide a unique subscription name and publisher ID. The subscription name
and publisher ID are used for replicating the data. Click Next.

Figure 3-38 Subscription Details window in the Configure Data Replication wizard

8. On the summary window, review your settings and click Finish to initiate
configuration of the data replication process and follow the progress.

Initiating data replication
With InfoSphere Change Data Capture, you can mirror data from source tables
(using CDC replication) that are mapped to target tables.
206 Oracle to DB2 Conversion Guide: Compatibility Made Easy

InfoSphere CDC provides two types of mirroring:

� Continuous mirroring:

This mirroring replicates changes to the target database on a continual basis.
Use this type of mirroring when business requirements dictate that you need
replication to be running continuously and you do not have a clearly defined
reason to end replication at the present time.

� Scheduled End (Net Change) mirroring:

This mirroring replicates changes to the target database until a user-specified
point in the source database log is reached, at which time replication is
stopped. Use this type of mirroring when business requirements dictate that
you replicate your data only periodically and you have a clearly defined
endpoint for the eventual state of your target database.

To begin CDC data replication, complete the following steps:

1. Right-click the listing for your DCW project and select Database
Conversion  Replicate Data through CDC.... This opens the Task
Selection wizard.

2. Select Initiate data replication and click Finish to open the Initiate Data
Replication wizard.

3. Specify the Access Server and replication agent details and provide a valid
subscription name and publisher ID details. Click Next.
 Chapter 3. Conversion process and enablement tools 207

4. Select a mirroring method (Figure 3-39). Click Next.

Figure 3-39 Choosing a mirroring method in the Initiate Data Replication wizard

5. View the summary and then click Finish. This initiates the data replication
process and shows the progress that occurs until replication is complete.

Ending data replication
Active replication of data can be stopped in Normal mode or Immediate mode:

� Normal: In this mode, the work in progress is completed before replication is
ended. Some time might elapse if there are in-progress transactions.

� Immediate: In this mode, the work in progress stops immediately and
replication is ended. Starting replication using Immediate mode can be slower
than using the Normal mode.

To stop data replication, complete the following steps:

1. Right-click the listing for your DCW project and select Database
Conversion  Replicate Data through CDC.... This opens the Task
Selection wizard.

2. Select Stop data replication and click Finish. This opens the Stop data
replication wizard.

3. Specify the access server that you want to stop and replication agent details
and provide a valid subscription name and publisher ID details. Click Next.
208 Oracle to DB2 Conversion Guide: Compatibility Made Easy

4. Select your preferred method for stopping active replication for the
subscription. If you also want to delete the subscription and remove any
related configuration, select Delete subscription, as shown in Figure 3-40.
When you click Finish, the wizard requests that the CDC server stop data
replication and deletes the subscription if that option was selected.

Figure 3-40 Selecting a method for ending replication

3.7.5 Manual data deployment

If you cannot run DCW in the environment where their target database exists,
you can load data manually by using scripts.

In this scenario, you follow the process for extracting data from flat files (see
“Extracting data to flat files” on page 194) and then transfer the load script and
the extracted data to your target DB2 environment. Then, you use the DB2
command line processor to run the script manually.

Complete the following steps:

1. Copy the directory with the extracted data (see “Extracting data to flat files” on
page 194) to the machine with the target DB2 database using your preferred
storage medium.
 Chapter 3. Conversion process and enablement tools 209

2. Open the load script (db2load.sql) and change the path of the data,
message, and dump folders.

3. If the OS of the machine where the extraction occurred is different from the
OS of the machine where the data will be deployed, replace the directory
separator to either the \ character (for Windows) or the / character (for Linux).

4. Run the db2load.sql script on the DB2 command line processor, as shown
here:

db2 => @db2load.sql

3.7.6 Selecting the appropriate data movement method

The data movement techniques explained in this chapter have their own
advantages and disadvantages.

Here is a list that summarizes the advantages of each technique and explains
when each method is likely to be most applicable:

� Extract and load data using flat files

This is the most common method for data movement. Users can extract data
from any environment, but the extracted data must be stored in intermediate
flat files that are later accessed for the data load. DCW must be installed on
the environment where the target DB2 server is running.

� Data movement using pipes

If you are working with large databases and have a low storage staging area
where extracted data can be stored, the data movement through pipes option
is preferred. In this method, data is directly transferred to the target DB2
database without an intermediary storage medium, thus making data
movement a single-step process. DCW must be installed on the environment
where the target DB2 server is running.

� Data movement using federation

When working with multiple source databases, use the federation option if it is
available. This method is one of the cleanest ways to perform data movement
and can be run from a local or a remote environment. Configuration involves a
one-time setup process, and data movement through federation does not
require a storage area to stage extracted data.

� Data movement using InfoSphere Change Data Capture

For environments where databases are progressive and the downtime
window is low, replicate using the CDC feature. This feature replicates data
through mirroring without stopping the source database. For production
databases, this is most appropriate way to migrate data, but this option
requires a CDC license that is not provided with DCW.
210 Oracle to DB2 Conversion Guide: Compatibility Made Easy

� Manual deployment of data

If you want to customize load scripts or cannot run DCW in the environment
where the target DB2 server is installed, run the load script directly from the
DB2 command line processor in the target environment.

3.7.7 Verifying data movement

Check the log and message files in the Data Movement folder in your DCW
project. If the data transfer was successful, these files provide a row count of
each table, which can be used to ensure that all of the data was moved correctly.
If the transfer failed, the log files contain detailed information about the errors that
occurred.

3.8 Deploying remaining objects on the target DB2
database

After moving data from the source Oracle database to the target DB2 database,
run the remaining DDL scripts against the target DB2 database to complete the
creation of database objects. You must ensure that you have completed the data
transfer from all tables in the scope of your project.

To deploy your remaining database objects, in Project Explorer, select your DCW
project and navigate to your folder with the split DDL files. You must run every file
within this folder to create all your remaining objects. You should have already
run the files in the Base Objects folder previously. You can run the files by
completing the following steps:

1. You can open each individual file by using the SQL Editor and clicking Run
SQL to run the DDL statements.

2. Alternatively, right-click the .sql file and select Database Conversion  Run
SQL files....

Depending on the order in which the DDL statements are run and the
dependencies between the database objects, it is possible that you must repeat
the execution of the DDL statements until all of the dependencies are satisfied.
 Chapter 3. Conversion process and enablement tools 211

3.9 Conclusion

The Database Conversion Workbench and Data Studio form a smart and
efficient toolset that offers a holistic approach toward the database conversion
process, with an automated solution for each stage plus hints and guidelines to
assist you in completing your project. Together with the improved Oracle
compatibility features in DB2 10.5 for Linux, UNIX, and Windows, IBM has
created a base for simplifying Oracle migrations and has added a new dimension
to database development in DB2.

If necessary, contact your IBM marketing representative to inquire about
additional assistance and services to help you enable your applications for a
DB2 database.

The latest information about the Database Conversion Workbench can be found
by visiting the Database Conversion Workbench community in IBM
developerWorks at this address:

http://www.ibm.com/developerworks/data/ibmdcw
212 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.ibm.com/developerworks/data/ibmdcw

Chapter 4. Enablement scenario

Using the Oracle compatibility features of IBM DB2 10.5, you can move your
Oracle database application to DB2 with few or no changes.

The previous chapters highlighted the available compatibility features of DB2
10.5, including natively supported syntax and enablement tools. This chapter
presents a complete migration scenario to illustrate how the compatibility
features can make conversions faster and easier. The scenario includes installing
DB2 software and creating a DB2 database in the Oracle compatibility mode. It
also demonstrates moving an Oracle database with a PL/SQL application to DB2
using the IBM Database Conversion Workbench (DCW).

The chapter includes these sections:

� Installing DB2 and creating an instance
� Enabling SQL compatibility
� Creating and configuring the target DB2 database
� Defining a new database user
� Using IBM Database Conversion Workbench
� Verifying enablement
� Summary

4

© Copyright IBM Corp. 2009, 2013. All rights reserved. 213

4.1 Installing DB2 and creating an instance

The enablement scenario that is presented here assumes a DB2 database
server that is set up on a machine that is running a Linux operating system.

Regardless of the platform on which DB2 is installed, you must consider and
satisfy all of the necessary hardware and software requirements. Review the
installation requirements and options in the DB2 Information Center at
this website:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.qb
.server.doc/doc/r0025127.html

The following DB2 manuals are also good sources of information:

� Getting Started with DB2 installation and administration on Linux and
Windows, GI13-2047

� Installing DB2 Servers, GC27-3884

� Installing IBM Data Server Clients, GC27-3883

Start by obtaining the DB2 10.5 software. If you do not have an IBM Passport
Advantage® account, you can download a DB2 trial package that you can use to
use the software for 90 days after installation. The package is available at:

http://www.ibm.com/software/data/db2/linux-unix-windows/download.html

For purposes of this scenario, install DB2 using the db2setup graphical setup
wizard. It can also be installed using an unattended response file. For more
information about installation methods, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.i
bm.db2.luw.qb.server.doc%2Fdoc%2Fc0008711.html

Important: For the most recent software requirements, see this website:

http://www.ibm.com/software/data/db2/linux-unix-windows/sysreqs.html
214 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.server.doc%2Fdoc%2Fc0008711.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.qb.server.doc%2Fdoc%2Fc0008711.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://www.ibm.com/software/data/db2/linux-unix-windows/sysreqs.html
http://www.ibm.com/software/data/db2/linux-unix-windows/download.html

After you download and unpack DB2 10.5 for Linux, UNIX, and Windows
operating systems, run the db2setup command as a user with administrative
privileges, such as root on Linux. This command starts the DB2 Setup
Launchpad that is shown in Figure 4-1.

Figure 4-1 DB2 Setup Launchpad
 Chapter 4. Enablement scenario 215

Select the Install a Product option and then click Install New (Figure 4-2).
Follow the setup wizard prompts, accepting the default values as you proceed.
For the DB2 administrator, provide a new user ID (this scenario uses db2inst1),
which is created as part of the installation.

Figure 4-2 Installing DB2

When the process concludes, the setup wizard opens a window where you
confirm that the DB2 installation was successful.
216 Oracle to DB2 Conversion Guide: Compatibility Made Easy

4.2 Enabling SQL compatibility

As described in Chapter 2, “Language compatibility features” on page 21, you
must enable the Oracle compatibility mode in the DB2 instance before you create
the DB2 database. You enable SQL compatibility by setting the
DB2_COMPATIBILITY_VECTOR and DB2_DEFERRED_PREPARE_SEMANTICS registry
variables. Then, you must stop and restart the instance using the db2stop and
db2start commands, as shown in Example 4-1.

Example 4-1 Enabling Oracle compatibility mode in DB2

/home/db2inst1>db2set DB2_COMPATIBILITY_VECTOR=ORA
/home/db2inst1>db2set DB2_DEFERRED_PREPARE_SEMANTICS=YES
/home/db2inst1>db2set -all
[i] DB2_DEFERRED_PREPARE_SEMANTICS=YES
[i] DB2_COMPATIBILITY_VECTOR=ORA
[i] DB2COMM=TCPIP
[i] DB2AUTOSTART=YES
[g] DB2SYSTEM=oc2522778176.ibm.com
[g] DB2INSTDEF=db2inst1
[g] DB2ADMINSERVER=dasusr1
/home/db2inst1>db2stop
2012-03-06 18.16.46 0 0 SQL1064N DB2STOP processing was
successful.
SQL1064N DB2STOP processing was successful.
/home/db2inst1>db2start
03/06/2012 18:16:54 0 0 SQL1063N DB2START processing was
successful.
SQL1063N DB2START processing was successful.

4.3 Creating and configuring the target DB2 database

Example 4-2 shows a script that uses the CREATE DATABASE command and other,
post-creation commands. Run this script while logged in to the database server
as the instance owner (in this scenario, as the db2inst1 user). When logged in
locally, the CONNECT TO command does not require a user ID and password
because these values are taken implicitly from the operating system.

Example 4-2 Script to create the DB2 database

CREATE DATABASE sales AUTOMATIC STORAGE YES ON /home/db2inst1 PAGESIZE
32 K;
 Chapter 4. Enablement scenario 217

CONNECT TO sales;
CREATE USER TEMPORARY TABLESPACE user_temp;
UPDATE DB CFG USING auto_reval deferred_force;
UPDATE DB CFG USING decflt_rounding round_half_up;
TERMINATE;

To run the script, save it in a text file and run the following command:

db2 -tvf <scriptname>

The command parameters for this enablement example scenario activate certain
DB2 features, which are explained below, that can help simplify database design,
future management, and initial tuning. The scenario also uses automation
features that are enabled by default. You do not need to specify parameters to
benefit from these automation features.

� Automatic storage

When you use this feature, which is enabled by default, you do not have to
configure the table space sizes or placement or be concerned about the
maintenance of the table spaces as they grow in size. On Linux and AIX
platforms, DB2 creates databases and their table spaces under the instance
owner’s home directory by default (for example, /home/db2inst1) or on a path
that is specified by the user.

� Page size 32 KB

The default page size that is used by the CREATE DATABASE command is 4 KB,
but you can override this value by selecting 32 KB, which is the largest page
size available. This page size ensures a seamless migration of tables with
both small and large row sizes.

Example 4-2 on page 217 also defines the following parameters:

� User temporary table space

A user temporary table space is used to allow the future creation of a global
temporary table.

� Automatic object revalidation

You change the database AUTO_REVAL configuration parameter to
DEFERRED_FORCE, as explained in 2.1.1, “SQL compatibility setup” on page 22.

Important: To ensure that the DB2 Oracle compatibility features function
correctly, create the database in Unicode, which is the default code page for all
new DB2 databases.
218 Oracle to DB2 Conversion Guide: Compatibility Made Easy

� Decimal floating point number rounding

You set the DECFLT_ROUNDING database configuration parameter to more
closely mimic the Oracle database behavior.

In addition, you also use the following related features of DB2 when you create
the database:

� Autonomic memory management

The scenario makes full use of the DB2 self-tuning memory manager and
autonomic features. By default, many DB2 memory heaps are automatically
tuned by the self-tuning memory manager, including buffer pools, sort
memory, hash join memory, and lock memory.

The self-tuning memory manager dynamically adjusts both the total memory
consumption of the database and the distribution of that memory to various
purposes and needs. Thus, the self-tuning memory manager can
automatically adjust pool sizes as needed to balance between different
requirements to achieve optimal performance. These adjustments happen
every few minutes in response to changing workload demands while the
database is active.

� Physical database design and storage management

Physical database design practices for DB2 are similar to the ones in an
Oracle database, although there are differences. For example, DB2 provides
multidimensional clustering (MDC) that is not offered by Oracle, and Oracle
provides bitmap indexes and list partitioning. Similarly, DB2 provides easy
automatic storage to simplify the management of data placement across
several devices and file systems.

Although similar in principle to the Oracle database storage model, the DB2
features use some different terminology and semantics. For an overview of
preferred practices for both physical database design and database storage
management, visit the IBM developerWorks website for DB2 at:

http://www.ibm.com/developerworks/data/bestpractices/

The section about physical database design offers recommendations for
designing indexes and materialized query tables (materialized views), table
clustering and multi-dimensional clustering, table partitioning (range
partitioning), database partitioning, and using the EXPLAIN facility to improve
design choices. The section about database storage includes guidelines and
recommendations for physical and logical volume design, RAID array use and
striping, placement of transaction logs and data, usage of file systems versus
raw devices, registry variable and configuration parameter settings, and
automatic storage.
 Chapter 4. Enablement scenario 219

http://www.ibm.com/developerworks/data/bestpractices/

4.4 Defining a new database user

Although there are various authentication methods available in DB2, such as
LDAP, Kerberos, or client authentication, the most common method is server
authentication. With server authentication, the user ID and password that is
needed to access the database are verified using the database server’s
operating system mechanisms.

Connections to the DB2 database for this scenario are made with the sales user,
which has database administrator (DBADM) authority. To create this user, run the
following Linux command (with root authority):

#useradd -m -d /home/sales sales

After the user is created, grant it the DBADM authority through a db2inst1
shell session:

/home/db2inst1>db2 "CONNECT TO sales"
/home/db2inst1>db2 "GRANT DBADM ON DATABASE TO USER sales"

4.5 Using IBM Database Conversion Workbench

You can use the DCW to move the database objects, table data, and PL/SQL
routines from the Oracle source database to the DB2 database in the
enablement scenario.

The DDL scripts and data that are used for this scenario are available for
download at the IBM Redbooks website. For the download details, see
Appendix F, “Additional material” on page 425. Appendix E, “Code samples” on
page 351 includes the DDL scripts.

4.5.1 Getting started

Begin by downloading the latest Database Conversion Workbench from the
following address:

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=swg-id
cw

Important: Although uppercase DB2 commands and SQL statements are
frequently used in this book, the commands, statements, and object names in
DB2 are not case-sensitive. Unless stated otherwise, you can use any case
when you run these commands.
220 Oracle to DB2 Conversion Guide: Compatibility Made Easy

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=swg-idcw
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=swg-idcw

Complete the following steps:

1. Extract the contents of the plug-in compressed archive to your chosen
plug-in directory.

2. Add the plug-in directory in Data Studio (Figure 4-3) by clicking Help 
Install New Software. After the Install wizard window opens, click Add and
click Local to select the directory where the plug-in was extracted. Provide a
name for this repository and click OK.

Figure 4-3 Adding a DCW plug-in location

Important: The IBM Database Conversion Workbench is a plug-in for IBM
Data Studio, so you should install Data Studio on your machine before
installing the DCW. At the time of writing, the current version of IBM Data
Studio is Version 4.1. You can download IBM Data Studio at no additional cost
from http://www.ibm.com/developerworks/downloads/im/data/.
 Chapter 4. Enablement scenario 221

http://www.ibm.com/developerworks/downloads/im/data/

3. Install the IBM Database Conversion Workbench plug-in. Following the wizard
prompts, review and accept the terms of the license and select Finish. You
might see a warning indicating that you are installing an unsigned plug-in;
click OK (see Figure 4-4) to proceed with the installation.

Figure 4-4 Unsigned plug-in warning during DCW installation

4. After the installation is completed, restart Data Studio.
222 Oracle to DB2 Conversion Guide: Compatibility Made Easy

To work with the Database Conversion Workbench in Data Studio, you use the
Database Conversion perspective. Switch to this perspective if it is not active
when the Data Studio opens. The first step is to create a DCW project by clicking
File  New  DCW Project, and then you can specify the project name and
select the source and target databases (Figure 4-5).

Figure 4-5 Creating a DCW project

4.5.2 Extracting DDL and PL/SQL objects

The DCW offers two methods of extracting the database object and routine DDL
statements, sometimes referred to as the database schema. Both methods are
accessible in the DCW project menu under the Extract DDL option.
 Chapter 4. Enablement scenario 223

One method, often called online extraction, is useful when you can establish a
direct connection from the DCW workstation to the Oracle database server. It
uses an existing Data Studio connection to read the object definitions directly
from the source database. When using this method, you can choose schemas
and object types to be extracted, define the statement terminator, and preview
the generated script before saving it, as shown in Figure 4-6.

Figure 4-6 Extracting the source DDL using a direct database connection

Another method, called offline extraction, is useful when it is not possible to
establish a direct connection to the source database. In that case, the DCW
generates a SQL*Plus script that you can run on the Oracle database server to
create the complete database DDL script. That script is later imported into the
DCW project.
224 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Before you proceed with the extraction of database objects and data, you must
create a connection to the Oracle database in Data Studio. For more information,
see the Data Studio documentation at the following address:

http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.
qrytune.configothers.doc/topics/configuretuning_ds.html

For our sample project, we import an existing Oracle database script. You can
find the source code in Appendix E, “Code samples” on page 351 or download it
from the IBM Redbooks website.

Right-click your project, select Database Conversion  Import a DDL file...,
and then select the file containing the DDL statements. The imported script
displays in the DCW project in Data Studio.

4.5.3 Compatibility evaluation

With a simple click of a button, the IBM Database Conversion Workbench can
analyze Oracle DDL and PL/SQL statements and create an assessment report
that outlines the compatibility of the source Oracle database with DB2. The
compatibility evaluation report includes an executive summary and a detailed list
of DDL and PL/SQL incompatibilities, and some suggested workarounds to fix
the incompatible code.

Important: Whether extracting the source DDL using a direct database
connection or importing an existing script, make sure that the statement
terminator is set to the forward slash symbol (“/”) to avoid conflicts with the
default terminator, the semicolon (“;”) found inside the PL/SQL code.
 Chapter 4. Enablement scenario 225

http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.configothers.doc/topics/configuretuning_ds.html

Begin by right-clicking the .sql file containing the source DDL and select
Database Conversion  Evaluate Compatibility. The Compatibility Evaluation
wizard opens with the option to select the source and target database
(Figure 4-7).

Figure 4-7 Compatibility Evaluation wizard window

When you click Finish, the DCW generates an encrypted XML file with the
extension .xmle, containing the summary of the source script. You see the
message shown in Figure 4-8.

Figure 4-8 Evaluation success
226 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The name of the generated file follows this syntax:

<source_script_name>-<timestamp>_report.xmle.

Attach this file to an email message and send it to askdcw@ca.ibm.com. You
receive an automated response shortly, which contains the formatted HTML
compatibility report that you can open using any web browser.

Important: The .xmle file does not contain any source code. It contains only
the list of detected incompatibilities.
 Chapter 4. Enablement scenario 227

The evaluation report for our sample application (Figure 4-9) indicates that most
of its SQL and PL/SQL statements run in DB2 without changes. Among the
detected incompatibilities is the use of Oracle XMLType and the DBMS_LOB
package, which we address later. Some issues, such as the NUMBER data type
precision exceeding the DB2 limit, are listed in the Informational section. They
are resolved automatically during the DCW conversion.

Figure 4-9 The sample application evaluation report

4.5.4 Conversion

The Database Conversion Workbench offers a powerful tool that can
automatically convert certain known Oracle syntax incompatibilities to the DB2
compatible syntax with a simple click.
228 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Begin by right-clicking the .sql file containing the Oracle DDL statements and
select Database Conversion  Convert Code.... The Code Conversion wizard
opens with the option to select the source and target databases (Figure 4-10).

Figure 4-10 Selecting the source and target databases in the Code Conversion wizard

The converted DDL file is in your DCW Project folder. Its name follows the
pattern <original_file_name>-<timestamp>_converted.sql.

Important: The Code Conversion wizard expects the statement terminators in
the source file to be forward slash symbols (“/”), which is the standard
terminator for Oracle SQL*Plus utility, and automatically changes them to the
@ symbol, which is a commonly used terminator in DB2 CLP scripts.
 Chapter 4. Enablement scenario 229

4.5.5 Splitting DDL

After the code conversion is complete, you can begin deployment of the objects
in the target DB2 database. To simplify this task, it is often useful to split the
monolithic DDL script, containing all of the database objects, into smaller files to
simplify deployment and troubleshooting. The DCW has a useful function to
convert a single DDL file into multiple files that are organized by object type. This
function helps streamline your Oracle to DB2 conversion process by providing a
much more intuitive code organization that helps you run the files in a logical
sequence of dependencies. Furthermore, it breaks down a large DDL file into
smaller and more manageable components, which in a larger project can allow
several developers to work in parallel.

Right-click the converted DDL file in the DCW Project and select Database
Conversion  Split DDL Files.

The Split SQL Files wizard opens. Select the appropriate Statement terminator,
as shown in Figure 4-11. We recommend using the @ symbol, which follows the
convention of the DB2 CLP scripts.

Figure 4-11 Split DDL wizard - select the statement terminator
230 Oracle to DB2 Conversion Guide: Compatibility Made Easy

After clicking Next, you see the list of objects that are identified by the wizard and
a confirmation window, showing what folders and files will be created. After the
wizard completes, you find the new files in the DCW project, as you can see in
Figure 4-12.

Figure 4-12 Split DDL wizard creates a directory tree with new scripts

4.5.6 Deploying objects

With the extraction, conversion, and split process completed, you can now create
tables and other necessary objects in the DB2 database and load the extracted
data. Do not deploy any PL/SQL objects now because they might
need modification.

This step involves running the extracted DDL statements against the target DB2
database to re-create the database objects.
 Chapter 4. Enablement scenario 231

First, use the DDL files generated by the Split DDL wizard to create tables
(DDL_table.sql) in the DB2 target database. This can be done by using the SQL
Editor in Data Studio. Double-click any SQL file to open it in the editor and select
Run  Run SQL. When prompted, choose an existing connection to the target
DB2 database or create a connection. The results and status are displayed in the
SQL Results tab.

For this enablement scenario, we use the functionality that provided by the DCW
that allows us to run multiple files at once. You can select multiple files or a folder
containing SQL scripts, then right-click the selection and select Database
Conversion  Run SQL Files.... In the Run SQL Files window, set the
statement delimiter to “@”, as shown in Figure 4-13, and choose the connection
profile of your target database.

Figure 4-13 Running SQL scripts

When the deployment is complete, you see a message similar to Figure 4-14.
Each statement result displays in the SQL Results tab.

Figure 4-14 Successful completion of SQL scripts
232 Oracle to DB2 Conversion Guide: Compatibility Made Easy

In our sample application, one of the tables, CUSTOMERS, has a function-based
index on an XML expression. However, DB2 10.5 does not yet directly support
function-based indexes and the Oracle XMLTYPE data type. Although the
XMLType column is automatically converted to the DB2 XML type by the DCW,
the creation of the index SALES.CUSTOMER_CITY_IND fails, as you can
confirm by viewing the SQL Results tab for the script DDL_index.sql.

The usual workaround for an Oracle function-based index in DB2 is to create a
generated column that is derived from the index expression and then build an
index on that column. However, in this case, the index expression involves
XMLTYPE, as shown in Example 4-3.

Example 4-3 Index that is based on an Oracle XMLTYPE function

CREATE INDEX customer_city_ind ON customers a
(XMLType.GETSTRINGVAL(

XMLType.EXTRACT(a.cust_details_xml,'//customer-details/addr/city/text()
'))
)

DB2 does not support XMLTYPE and the generated column cannot be created.
However, the IBM DB2 pureXML feature offers a solution. You can create an
index on an XML expression, as shown in Example 4-4.

Example 4-4 DB2 XML index

CREATE INDEX sales.customer_city_ind ON sales.customers
(cust_details_xml)
GENERATE KEYS USING XMLPATTERN '//customer-details/addr/city/text()'
AS SQL VARCHAR(50)

You can even enable case-insensitive searches, such as by the customer city
name, by creating a case-insensitive XML index, as shown in Example 4-5.

Example 4-5 Creating a case-insensitive XML index

CREATE INDEX sales.customer_city_ind ON sales.customers
(cust_details_xml)

Important: When deploying sequences, you might want to reset their current
values to avoid generating duplicate values or gaps. Use an ALTER SEQUENCE
statement similar to the following one:

ALTER SEQUENCE myseq RESTART WITH <new_value>
 Chapter 4. Enablement scenario 233

GENERATE KEYS USING XMLPATTERN
'//customer-details/addr/city/fn:upper-case(.)'
AS SQL VARCHAR(60)

Open the DDL_index.sql file and replace the DDL statement for
SALES.CUSTOMER_CITY_IND with one using DB2 pureXML.

Now you can repeat the deployment of DDL_index.sql. Check the index
deployment logon SQL Results tab to verify that the XML index is created.

4.5.7 Extracting and loading data from files

After the target DB2 database is created and set up, you can move your data
from the source Oracle database to the target DB2 database. The Database
Conversion Workbench provides multiple methods to transfer data from one
database to another: flat files, pipes, and federation. For this enablement
scenario, we use flat files. For a description of other data movement methods,
see Chapter 3, “Conversion process and enablement tools” on page 159 and the
DCW documentation at the following address:

http://www.ibm.com/developerworks/data/ibmdcw
234 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.ibm.com/developerworks/data/ibmdcw

The Data Movement wizard provides an easy to use method to transfer the data
for entire schemas. Right-click the conversion project and select Database
Conversion  Extract Data.... The Extract Data to Flat Files wizard opens. It
guides you through the required steps:

1. Select the source Oracle database and choose the schemas to extract, as
shown in Figure 4-15. Click Next.

Figure 4-15 Data Movement wizard - selecting schemas
 Chapter 4. Enablement scenario 235

2. After you select the schemas, pick the tables you want to move, as shown in
Figure 4-16. Click Next.

Figure 4-16 Data Movement wizard - selecting tables
236 Oracle to DB2 Conversion Guide: Compatibility Made Easy

a. Specify the data movement configuration parameters (Figure 4-17).
Click Next.

Figure 4-17 Data movement configuration parameters

After configuring the Data Movement parameters, you can view the summary of
settings for data extraction and click Finish. The extraction starts and the
progress is displayed in a separate window. The data movement log is
automatically shown in Data Studio after the process is finished. These logs are
also created in your DCW project under the Data Movement folder.

4.5.8 Deploying PL/SQL objects

Recall that the PL/SQL objects were extracted in 4.5.2, “Extracting DDL and
PL/SQL objects” on page 223. After you load your data, you can use the
interactive deployment feature of Data Studio to edit and deploy the PL/SQL
routines to the target database.
 Chapter 4. Enablement scenario 237

You can use the same functionality that is used to deploy tables and other DDL
scripts. Here you can select all the SQL scripts that you did not run yet, and the
entire folders for PLSQL objects. Right-click the project and navigate to
Database Conversion  Run SQL Files..., set the statement delimiter to “@”,
and select the connection profile of your target database. When the process
completes, the results display in the SQL Results tab, as shown in Figure 4-18.

Figure 4-18 Viewing deployment results

4.5.9 Resolving incompatibilities with Interactive Deploy

This scenario intentionally introduces incompatibilities to illustrate methods for
solving them. For example, the deployment results list that is shown in
Figure 4-18 shows the statements that failed.

Important: Some of the views and routines that you migrate might contain
unqualified references to tables in the SALES schema. To avoid potential
problems during deployment and at run time, connect to the target database
as the sales user for deployment. This connection ensures that unqualified
references are resolved to the correct schema.
238 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Deploy PL/SQL routines one by one, modifying statements when necessary. You
must make the following changes:

� In the ADD_NEW_EMPLOYEE procedure, replace the reference to the
EMP_INFO_TYPE constructor with type field assignments, as shown in
Example 4-6. You can also define a PL/SQL function with the same signature
as the constructor, which performs the field assignment.

Example 4-6 Correcting an unsupported object data type constructor

-- constructors not supported >> o_Employee:=EMP_INFO_TYPE(
-- x.emp_id, x.first_name, x.last_name, x.band);
 o_Employee.emp_id := x.emp_id;
 o_Employee.first_name := x.first_name;
 o_Employee.last_name := x.last_name;
 o_Employee.band := x.band;

� In the EMPLOYEE_DYNAMIC_QUERY procedure, calls to the
BIND_VARIABLE, COLUMN_VALUE, and DEFINE_COLUMN procedures of
the built-in DBMS_SQL module must be modified to include the variable or
column data type, as illustrated in Example 4-7.

Example 4-7 Modifying DBMS_SQL procedure signatures

-- modify signature >> DBMS_SQL.BIND_VARIABLE(
-- v_CursorID, ':d1', p_department1);
DBMS_SQL.BIND_VARIABLE_CHAR(v_CursorID, ':d1', p_department1);

� In the GET_EMPLOYEE_RESUME procedure, replace the call to
DBMS_LOB.CREATETEMPORARY() with a call to the built-in function EMPTY_CLOB().
Also, replace the calls to DBMS_LOB.WRITE() and DBMS_LOB.APPEND() with
DBMS_LOB.WRITE_CLOB() and DBMS_LOB.APPEND_CLOB().

� In the INSERT_CUSTOMER_IN_XML procedure, replace references to the
Oracle XMLTYPE and the related functions EXTRACT(), GETSTRINGVAL(), and
EXISTSNODE() with the appropriate DB2 pureXML functions. Example 4-8
shows one of the original queries that retrieve data from the XML column, and
Example 4-9 on page 240 presents the same query rewritten using the DB2
pureXML features.

Example 4-8 Querying Oracle XMLType column

SELECT extract(
cust_details_xml,
'//customer-details/name/text()').getStringVal()
as cust_name

FROM CUSTOMERS
WHERE existsNode(cust_details_xml,'//customer-details') = 1
AND extract(
 Chapter 4. Enablement scenario 239

cust_details_xml,
'//customer-details/addr/city/text()').getStringVal()=v_city

AND cust_id<>v_cust_id

Example 4-9 Querying DB2 XML column using pureXML

SELECT x.cust_name
FROM sales.CUSTOMERS c, XMLTABLE(

'$CUST_DETAILS_XML//customer-details[addr/city=$city]'
PASSING v_city as "city"
COLUMNS

 cust_name VARCHAR(128) PATH 'name'
) x

Where cust_id<>v_cust_id

� Replace the Oracle CREATE DIRECTORY statements in the DDL_other.sql file
with calls to the DB2 built-in procedure
UTL_DIR.CREATE_OR_REPLACE_DIRECTORY().

In addition to the manual changes described here, the converted PL/SQL code
might include more modifications that the DCW performs automatically during
conversion. For example, the nested function AVERAGE_BAND() in the procedure
ACCOUNT_PACKAGE.DISPLAY_ACCOUNT_LIST is automatically converted
into a package-level function, as DB2 10.5 does not yet support nested functions.

4.6 Verifying enablement

To verify that the database objects and PL/SQL code were converted
successfully, run the PL/SQL anonymous block that simulates the application by
calling its various functions. You can find the sample code for this block in
Appendix E, “Code samples” on page 351.

Important: The CREATE DIRECTORY statement references a directory name.
Verify that the directory paths exist on the target server and that the DB2
instance owner (db2inst1) can write to these paths.
240 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Use the DB2 CLPPlus command-line interface (CLI), as shown in Example 4-10.
You can use CLPPlus to run Oracle SQL*Plus scripts with minimal or no
modifications.

Example 4-10 Running an Oracle SQL*Plus script using DB2 CLPPlus

db2inst1$ clpplus -nw sales/sales@localhost:50000/sales /
@Oracle_SalesDB_app_simulation.sql
CLPPlus: Version 1.5
Copyright (c) 2009, 2011, IBM CORPORATION. All rights reserved.

Database Connection Information :

Hostname = localhost
Database server = DB2/LINUXX8664 SQL10010
SQL authorization ID = sales
Local database alias = SALES
Port = 50000

The last command in the sample script Oracle_SalesDB_app_simulation.sql is
SHOW ERRORS. It lists exceptions that might have occurred during the script
execution. In this scenario, the script completes without errors and its output,
which is printed by the calls to the built-in procedure DBMS_OUTPUT.PUT_LINE(),
matches the output from the original application in the Oracle database, which
confirms that the application enablement is successful.

4.7 Summary

This chapter demonstrated how to move a sample Oracle database application to
DB2, complete with different data types and PL/SQL procedures and packages,
with minimal effort. Almost all of the statements in the source database were
supported by DB2 without modifications, and the few incompatible statements
were quickly identified, modified, and deployed using IBM Database Conversion
Workbench. The result of this short enablement process is a fully functional DB2
database.
 Chapter 4. Enablement scenario 241

242 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Chapter 5. Application conversion

This chapter provides examples of converting client-side applications from an
Oracle environment to a DB2 environment. The applications use various
languages, and each language can have its unique way of using a DB2
application interface (API). This chapter explains the necessary steps for
converting client-side applications from the Oracle database to DB2.

This chapter covers the following topics:

� DB2 application development introduction
� Application enablement planning
� Converting XML features
� Converting Oracle Pro*C applications to DB2
� Converting Oracle Java applications to DB2
� Converting Oracle Call Interface applications
� Converting Open Database Connectivity applications
� Converting Perl applications
� Converting PHP applications
� Converting .NET applications

5

Examples in this chapter: The examples in this chapter are excerpts from
actual programs and cannot be compiled and run by themselves.
© Copyright IBM Corp. 2009, 2013. All rights reserved. 243

5.1 DB2 application development introduction

When you develop applications that access databases, you embed the data
access methods that are available in the programming language of choice into
the application. IBM DB2 provides various programming interfaces for data
access and manipulation.

There are various methods for performing database interaction from your
application, including embedded static and dynamic SQL, and standard and DB2
native API calls.

5.1.1 Driver support

DB2 currently supports many standard database APIs and provides drivers for
them, including CLI/ODBC, ADO and OLEDB, JDBC, SQLJ, Perl DBI, PHP, and
the .NET Data Provider.

Perl database interface
To better understand how the interface works, examine the Perl database
interface (DBI). A Perl program uses a standard API to communicate with the DBI
module for Perl, which supports only dynamic SQL. DBI gives the API a
consistent interface to any database that the programmer wants to use.
DBD::DB2 is a Perl module, which, when used with DBI, allows Perl to
communicate with the DB2 database.

Figure 5-1 illustrates the Perl/DB2 environment.

Figure 5-1 Perl/DB2 environment

You can download Perl source code or a precompiled binary distribution at:

http://www.perl.org/get.html
244 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.perl.org/get.html

In addition to Perl, you need to download and install the following modules to use
the Perl driver for DB2:

� DBI
� DBD::DB2

You can download these modules from the Comprehensive Perl Archive Network
(CPAN) at:

http://www.CPAN.org

For the installation instructions, see the module documentation.

PHP extensions
IBM supports access to DB2 databases from PHP applications through the
following extensions, which offer distinct sets of features:

� ibm_db2

This extension is an extension that is written, maintained, and supported
feature by IBM for accessing DB2 databases and Cloudscape. It is an
optimized driver that is built on top of the DB2 Call Level Interface (CLI) driver.
It offers a procedural API that, in addition to the normal create, read, update,
and delete database operations, offers extensive access to the database
metadata. This extension can be compiled with either PHP 4 or PHP 5.

� PDO_IBM and PDO_ODBC

These are drivers for the PHP Data Objects (PDO) extension that offers
access to DB2 databases through the standard object-oriented database
interface. PDO_IBM is an IBM database driver. Both PDO_IBM and
PDO_ODBC extensions can be compiled directly against the DB2 libraries to
avoid the communications impact and potential interference of an ODBC
driver manager. This extension can be compiled with PHP 5.1.

An easy method of installing and configuring PHP on Linux, UNIX, or Windows
operating systems is to use Zend Server Community Edition, which provides a
ready to use experience. You can download and install Zend Server for use in
production systems from the following website:

http://www.zend.com/downloads

More information about Perl and DB2: For the latest information about Perl
and DB2 and related Perl modules, including installation advice, see:

http://www.ibm.com/software/data/db2/perl/
 Chapter 5. Application conversion 245

http://www.CPAN.org
http://www.ibm.com/software/data/db2/perl/
http://www.zend.com/downloads

Additionally, precompiled binary versions of PHP are available for download at:

http://www.php.net/

Most Linux distributions include a precompiled version of PHP. On UNIX
operating systems that do not include a precompiled version of PHP, your own
version of PHP can be compiled.

To learn how to set up the PHP environment on Linux, UNIX, or Windows
operating systems and develop applications, see Developing Perl, PHP, Python,
and Ruby on Rails Applications, SC27-3876.

5.1.2 Embedded SQL

SQL statements can be embedded within a host programming language source,
where the SQL statements provide the database interface while the host
language provides the remaining functionality. Embedded SQL applications
require a specific precompiler for each language environment to preprocess (or
translate) the embedded SQL calls in to the appropriate API calls.

Building embedded SQL applications involves two prerequisite steps before
application compilation and linking. An advantage of the static embedded SQL
method is that it is often more efficient and can yield better performance.

To build DB2 embedded SQL applications, complete the following steps:

1. Prepare the source files that contain the embedded SQL statements using
the DB2 precompiler.

The PREP (PRECOMPILE) CLP command is used to start the DB2 precompiler.
The precompiler reads the source code, parses and converts the embedded
SQL statements to DB2 runtime services API calls, and writes the output to a
modified source file. The precompiler produces access plans for the
embedded SQL statements, which are stored together as a package in the
database catalog.

2. Bind the package to the target database.

Binding is done, by default, during precompilation (through the PREP
command). If binding is deferred (for example, running the BIND command
later), then the BINDFILE option needs to be specified with PREP for a bind file
to be generated.
246 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.php.net/

Figure 5-2 shows the precompile-compile-bind process for creating a program
with embedded SQL. This process is different from building embedded SQL
applications for Oracle database access, as the Oracle database does not have
the concept of binding applications to the database before run time.

Figure 5-2 Process for creating DB2 embedded SQL applications

DB2 supports the C/C++, Fortran, COBOL, and Java (SQLJ) programming
languages for embedded SQL.

Step 1: Precompile(db2 PREP)

Step 2: Host Language Compiler

Step 3: Host Language Linker

Database Manager Package

Bind file

Application
With Embedded SQL

Modified Source File

Object files

Executable Program

Step 4: Binder (db2 BIND)
 Chapter 5. Application conversion 247

Embedded SQL applications can be categorized as follows:

� Static embedded SQL

In this case, you are required to specify complete SQL statements before the
program compilation. This situation means that all database objects (tables,
columns, and so on) referenced in a statement, and the data types of all host
variables, must be fully known at precompilation time. Host variables, which
are declared variables that allow programs to communicate with the
database, should be declared in a separate EXEC SQL DECLARE SECTION and
be compatible with DB2 data types.

When you use static SQL, you cannot change the form of the SQL statements
without recompilation, but using host variables increase the flexibility of the
static SQL statements.

Example 5-1 shows a fragment of a COBOL program with static
embedded SQL.

Example 5-1 A COBOL static embedded SQL program

move "Clerk" to job-new;
move "Mgr" to job-old
EXEC SQL UPDATE staff SET job=:job-new
 WHERE job=:job-old
END-EXEC.
move "UPDATE STAFF" to errloc.

� Dynamic embedded SQL

If every database object in the SQL statement is not known at precompilation
time, you can use dynamic embedded SQL. The dynamic embedded SQL
statement accepts a character string host variable and a statement name as
arguments. These character string host variables serve as placeholders for
the SQL statements to be defined and run later. Dynamic SQL statements are
prepared and run during the program run time.

In other words, dynamic SQL statements can be used when you do not know
the format of an SQL statement before you run a program.

Example 5-2 shows a fragment of a C program with a dynamic
SQL statement.

Example 5-2 A dynamic SQL C program

EXEC SQL BEGIN DECLARE SECTION;
char st[80];
char parm_var[19};
EXEC SQL END DECLARE SECTION;
248 Oracle to DB2 Conversion Guide: Compatibility Made Easy

strcpy(st, "SELECT tabname FROM syscat.tables");
strcat(st, " WHERE tabname <> ? ORDER BY 1");

EXEC SQL PREPARE s1 FROM :st;
EXEC SQL DECLARE c1 CURSOR FOR s1;
strcpy(parm_var, "STAFF");
EXEC SQL OPEN c1 USING :parm_var;

The host variable PARM_VAR still must be declared in the EXEC SQL
DECLARE SECTION.

5.2 Application enablement planning

Application enablement is another major step in the enablement project. This
process includes the following steps:

� Checking software and hardware availability and compatibility
� Educating developers and administrators
� Analyzing application logic and source code
� Setting up the target environment
� Changing vendor-specific database API use
� Application testing
� Application tuning
� Production rollout procedures
� User education

Planning includes the creation of a project plan. Plan enough time and resources
for each task. IBM and IBM Business Partners can help you define a
well-prepared project.

When migrating applications developed in-house, the entire enablement effort
falls in to the hands of the development team. With packaged applications, you
can contact the vendor for a recommended enablement process.

5.2.1 Checking software and hardware availability and compatibility

The application architecture profile is one of the important outputs at this stage of
the enablement process. While you prepare the architecture profile, you must
assess the availability and compatibility of all software and hardware
components in the new environment.
 Chapter 5. Application conversion 249

5.2.2 Educating developers and administrators

Ensure that your staff has the appropriate, up-to-date skills for all products and
the system environment you use for the enablement project. Understanding the
capabilities, limitations, and the application development approaches of the new
product is essential for fully analyzing the source system.

5.2.3 Analyzing application logic and source code

In this phase, you should identify all the affected sources. With the availability of
DB2 10.5, the new Oracle Database compatibility features have closed most of
the gaps. Minor incompatibilities might still exist in the use of the Oracle Data
Dictionary, optimizer hints, some built-in functions and packages, and certain
SQL constructs. You also must analyze the use by the applications of the Oracle
proprietary APIs and Oracle extensions to the standard interfaces, such
as JDBC.

5.2.4 Setting up the target environment

The target system, either the same or a different one, must be set up for the DB2
application development. The environment can include:

� An Integrated Development Environment (IDE)
� Database client software and the required drivers
� Source code repository
� Additional development and build tools
� Configuration management tools
� Documentation tools
� Automated testing tools

A complex system environment usually consists of products from different
vendors. Check their availability and compatibility before you start the project.

5.2.5 Changing vendor-specific database API use

You might need to change the database API calls in the applications if they are
proprietary or present vendor-specific extensions to the standard interfaces.
250 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The following changes might be needed:

� Language syntax changes

The syntax of database calls varies in different programming languages. We
describe various C/C++, Java, and other applications. For information about
other languages, contact IBM Technical Sales.

� SQL query changes

You can use nonstandard SQL syntax in Oracle, such as the use of unnamed
columns in subqueries. Many Oracle database DDL statements include
features that are not applicable to DB2. Although DB2 now supports or
tolerates many of these SQL extensions, in some cases you must modify
incompatible statements. For supported SQL syntax and features, see:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp

SQL Reference, Volume 1, SC27-3872 and SQL Reference, Volume 2,
SC27-3872 also contain useful information.

In some cases, you might have to modify the SQL queries to the Oracle Data
Dictionary. DB2 supports only a subset of the Oracle Data Dictionary views,
as the database metadata differs between the Oracle Database and DB2.

� Changes in calling procedures and functions

Sometimes you must change procedures to functions (and vice versa) or
modify the routine signatures. In such cases, you must change all of the
affected routine calls, and the parameter passing and processing of the
routine results in PL/SQL code within the database and in the
client applications.

� Logical changes

In rare cases, changes in the program logic might be required because of
architectural differences between the Oracle Database and DB2. For
example, you might need to carefully analyze the application behavior if it
relies on certain features of the Oracle database concurrency model.

5.2.6 Application testing

A complete application functional test is necessary after the database conversion
and application enablement to ensure that all data and functionality is migrated
without errors.

It is prudent to perform the enablement process several times in a development
environment to verify the process, later perform the same enablement on a test
system with existing test data, and then on a copy or subset of production data,
before eventually deploying the enabled application into production.
 Chapter 5. Application conversion 251

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp

5.2.7 Application tuning

Tuning is a continuous activity for any database because data volume, the
number of users, and applications change from time to time. After the successful
enablement end-to-end application, tuning should be performed with particular
focus on the architectural differences between Oracle and DB2. There are many
publications that offer DB2 performance tuning advice and preferred practices,
for example, Tuning and Monitoring Database System Performance, at:

http://www.ibm.com/developerworks/db2/bestpractices/systemperformance/

Alternatively, you can use Troubleshooting and Tuning Database Performance,
SC27-3889.

5.2.8 Production rollout procedures

The rollout procedures vary and depend on the type of application and the
database connection that you have:

� Prepare client workstations and application servers by installing correct DB2
Data Server Client editions or individual drivers, appropriate for the DB2 Data
Server version.

� Plan and implement database maintenance procedures, monitoring
infrastructure, high availability, and disaster recovery features using the
available DB2 features and add-on products according to your requirements.

5.2.9 User education

If there are changes in the user interface, business logic, or the application
behavior because of system improvements, user education is required. Be sure
to provide correct user education, because acceptance of the new environment
is largely tied to the skills and satisfaction of the users.

5.3 Converting XML features

Although SQL/XML and XQuery are each defined by their own particular
standards, there are still differences in how Oracle Database and DB2 adhere to
these standards. As a result, there are differences in how you create, store,
query, and modify XML content. DB2 has supported XML natively since DB2 9.1
in the form of its DB2 pureXML feature, and has continually enhanced the XML
support to include non-Unicode database, XML Load utility, and JDBC support.
252 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.ibm.com/developerworks/db2/bestpractices/systemperformance/

5.3.1 SQL/XML

SQL/XML is an extension of SQL that is part of the ISO SQL specification. The
SQL/XML functions start XPath or XQuery expressions and are used in SQL
statements to access XML data or to generate (publish) XML documents from
relational data.

SQL/XML functions can be categorized into two groups:

� Functions that query and access XML content
� Functions that generate (publish) XML content from SQL data

For those SQL/XML functions that query and access XML content, Oracle
Database provides a set of functions that use XPath to access XML content.
Included in these functions are what are known as XMLType methods. The
XMLType methods belong to the XMLType data type. Some examples are
getStringVal(), getClobVal(), getNumberVal(), getNamespace(), and
getBlobVal(). In addition to the XMLType methods, Oracle Database also
provides other SQL/XML functions, such as EXTRACT(), EXISTSNODE(),
and EXTRACTVALUE().

Oracle Database also supports the ISO/IEC standard SQL/XML functions,
XMLQuery, XMLTable, and XMLExists. These functions, known as the XQuery
functions, are also supported on DB2, with XMLExists.

In addition to the SQL/XML querying functions, both DB2 and Oracle databases
support several other types of functions, such as XMLCast, XMLParse, and
XMLSerialize. Oracle Database also supports the casting function XMLType that
converts an XML string value to an XMLType value. XMLType is most similar to the
DB2 XMLParse function. To cast XML values to scalar string values, you can use
the DB2 XMLCast function.

DB2 supports standard functions that generate XML documents and fragments
from relational data. These functions are referred to as the “publishing” functions,
and include XMLDocument, XMLElement, XMLAgg, XMLAttribute, XMLConcat,
and XMLForest.

In short, you can use the DB2 pureXML feature to map the Oracle database
XMLType data type and the corresponding methods and functions to the DB2
XML data type and DB2 pureXML functions.
 Chapter 5. Application conversion 253

Table 5-1 lists some of the frequently used SQL/XML functions that are
supported by Oracle Database and maps them to DB2 equivalents.

Table 5-1 SQL/XML function mapping

Oracle Database
SQL/XML

SQL/XML
category

Oracle
specific

DB2 equivalent DB2 SQL/XML behavior

existsNode Access Yes XMLEXISTS Used in a WHERE clause to filter
rows returned.

extract Access Yes XMLQUERY Returns an XML sequence.

extractValue Access Yes XMLQUERY
XMLCAST

Returns an XML value and
converts to an SQL scalar value.

getstringVal Access Yes XMLCAST Converts an XML value to an SQL
scalar value.

getNumberVal Access Yes XMLCAST Converts an XML value to an SQL
scalar value.

XMLCAST Access No XMLCAST Casts to the specified data type.

XMLEXISTS Access No XMLEXISTS Used in a WHERE clause to filter
rows returned.

XMLQUERY Access No XMLQUERY Returns an XML sequence.

XMLTABLE Access No XMLTABLE Returns XML values as a table.

XMLPARSE Casting No XMLPARSE Casts an XML string into the XML
data type.

XMLTYPE Casting Yes XMLPARSE Casts an XML string into the XML
data type.

XMLSERIALIZE Casting No XMLSERIALIZE Casts an XML sequence into an
XML string value.

XMLCONCAT Generate No XMLCONCAT Returns a sequence that
concatenates XML values.

XMLELEMENT Generate No XMLELEMENT Returns an XML element.

XMLAGG Generate No XMLAGG Returns a sequence containing
non-null XML values.

XMLATTRIBUTES Generate No XMLATTRIBUTES Generates attributes for an
element.

XMLFOREST Generate No XMLFOREST Returns a sequence of element
nodes.
254 Oracle to DB2 Conversion Guide: Compatibility Made Easy

To convert Oracle SQL/XML functions to DB2, find the best equivalent DB2
pureXML functions and see pureXML Guide, SC27-3892-00 and DB2 SQL
Reference, Volume 1, SC27-3872-00 for correct syntax and function usage
guidelines. There might be some syntax differences even if a particular function
is a part of the ISO/IEC or W3C standard and is supported both by Oracle
Database and DB2.

Example 5-3 and Example 5-4 demonstrate some of these differences. In
Example 5-3, both extract() and existsNode() functions are Oracle SQL/XML
functions; the XML namespace is specified.

Example 5-3 Querying XML data with SQL/XML functions in an Oracle database

SELECT
extract(info,'/customerinfo//addr','xmlns="http://posample.org"')
FROM customer
WHERE
 existsnode(info,'/customerinfo//addr[city="Aurora"]',
 'xmlns="http://posample.org"')=1;

Example 5-4, the DB2 example, uses the wildcard notation (*:) for namespace,
which is prefixed to the XML elements. The wildcard matches any name space.
Although the wildcard notation is part of the W3C standard, it is not supported
by Oracle.

Example 5-4 Querying XML data with pureXML functions in DB2

SELECT XMLQUERY('$R/*:customerinfo//*:addr' PASSING info AS "R")
FROM customer
WHERE XMLEXISTS('$R/*:customerinfo//*:addr[*:city="Aurora"]'
 PASSING info as "R");

Example 5-5 shows how to specify a name space in DB2 XMLQuery when not
using the wildcard notation.

Example 5-5 Specifying XML namespace in XMLQUERY

SELECT XMLQUERY ('declare default element namespace
"http://posample.org"; $R/customerinfo//addr' PASSING INFO AS "R")
 Chapter 5. Application conversion 255

Example 5-6 and Example 5-7 demonstrate the casting of XML values in an
Oracle database and DB2.

� Oracle database

Example 5-6 Extracting XML sequences and scalar values using Oracle functions

cityxml := incust.extract('/customerinfo//city');
city := cityxml.extract('//text()').getstringval();

� DB2

Example 5-7 Extracting XML sequences and scalar values using the DB2 pureXML
feature

cityXml := XMLQUERY('$cust/customerinfo//city' passing inCust as
"cust");
city := XMLCAST(cityXml as VARCHAR(100));

When you specify an XPath or XQuery expression in an Oracle SQL/XML
function, Oracle Database runs the expression based on the type of XMLType
storage used. If XMLtype uses unstructured storage, when it is represented by a
CLOB instance, then the value is parsed and a DOM tree of the XML document
is created in memory to process the XPath expression. If XMLtype uses
structured storage, which translates into a set of relational tables, the Oracle
database rewrites the XPath expression into the equivalent SQL statement
query.

In DB2, values of the XML data type are stored in a special hierarchical binary
format, and the DB2 pureXML query engine can traverse XML documents using
XPath expressions. As a result, the XPath or XQuery expressions are not
rewritten into SQL statements and XML documents do not need to be loaded into
memory as DOM trees for processing.

5.3.2 XQuery

Although standardization was a goal of the World Wide Web Consortium (W3C)
when it designed the XQuery language, there are differences in how Oracle and
IBM implemented XQuery within their database products.

With DB2, XQuery is a case-sensitive, primary language that can be embedded
directly within applications that access a DB2 database, or issued interactively
from the DB2 command line processor (CLP). An XQuery statement is prefixed
with the keyword XQUERY and is not limited to being started only from an
SQL/XML function. The keyword indicates that the primary language is XQuery.
256 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Two DB2 defined functions are used in In XQuery to access relational data in a
DB2 database:

� db2-fn:xmlcolumn: For retrieving an XML sequence from an XML column.

� db2-fn:sqlquery: For retrieving a sequence of XML values based on the result
of an SQL query.

In an Oracle database, the XQuery statement cannot be embedded directly
within SQL applications. The XQuery language statements in applications are
run with the functions XMLQuery() and XMLtable(). The XQuery command can be
executed natively only from the SQL*Plus command processor environment.
However, before you run XQuery from SQL*Plus, the environment must be
properly initialized, which is accomplished by running an Oracle-provided script.
After you run this script and setting some additional parameters, the XQUERY
command can be used.

Oracle provides several XQuery and XPath extension functions that have a prefix
of ora. Some of these functions are ora:view, ora:contains, and ora:replace.
These extension functions do not have equivalents in DB2. To convert the Oracle
XQuery extension functions to DB2, you must rewrite the XQuery expressions
that contain them. For example, ora:view is used to create XML views on
relational data so that the data can be manipulated as an XML document. In
DB2, this task is accomplished by using the SQL/XML publishing functions that
were described earlier.

Oracle Database supports the standard XQuery functions fn:doc and
fn:collection. These functions are used to retrieve a single document or a
collection of documents that are stored in files in the Oracle XML DB repository.
In DB2, XML documents are always stored in tables as column values, and the
db2-fn:xmlcolumn function can be used instead.

Example 5-8 compares the differences between the XMLQuery function that is
used in the Oracle and DB2 databases.

Example 5-8 XQuery differences

-- In Oracle database ---
SELECT XMLQUERY('$i/customerinfo//city'
 PASSING incust AS "i" RETURNING CONTENT) INTO cityxml
 FROM DUAL;

-- In DB2 ---
SELECT XMLQUERY('$cust/customerinfo//city' PASSING inCust as "cust")
INTO cityxml FROM DUAL;
 Chapter 5. Application conversion 257

Example 5-9 shows how to loop through XML content in an Oracle
PL/SQL application.

Example 5-9 Looping through XML content in Oracle PL/SQL application

CURSOR cur1(vcity IN VARCHAR2) IS
SELECT info from customer_us
WHERE
existsnode(info,'/customerinfo//addr[city="'||vcity||'"]','xmlns="http:
//posample.org"') = 1;
...
FOR c IN cur1(city) LOOP
customer := c.info.extract('//name','xmlns="http://posample.org"');
...
END LOOP;

In a DB2 application, the same iteration through XML content can be done,
except that the FOR loop is replaced, because DB2 does not currently allow XML
variables in the FOR block. See Example 5-10.

Example 5-10 Looping through XML content in DB2

CURSOR cur1(vcity IN VARCHAR2) IS
SELECT info from customer
WHERE XMLEXISTS('$R//customerinfo//addr[city="$vcity"]' PASSING info as
"R");
...
OPEN cur1(city);
LOOP

FETCH cur1 INTO customer;
EXIT WHEN cur1%NOTFOUND;
customer1 := XMLQUERY(‘$cust/customerinfo//name’ passing customer as

“cust”);
END LOOP;

Example 5-11 and Example 5-12 on page 259 compare the use of the XMLTABLE
function in the Oracle and DB2 databases. The XMLTABLE function is a standard
SQL/XML function, and the same name space declaration can be used in
both cases.

Example 5-11 Using the XMLTABLE function in Oracle database

select X.*
from customer_us,
 xmltable (XMLNAMESPACES (DEFAULT 'http://posample.org'),
 'for $m in $col/customerinfo
258 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 return $m'
 passing customer_us.info as "col"
 columns
 "CUSTNAME" char(30) path 'name',
 "phonenum" xmltype path 'phone')
as X;

Example 5-12 Using the XMLTBLE function in DB2

select X.*
 from xmltable (XMLNAMESPACES (DEFAULT 'http://posample.org'),
 'db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo'
 columns
 "CUSTNAME" char(30) path 'name',
 "phone" xml path 'phone')
as X;

5.3.3 Modifying XML data

The initial release of the XQuery language only specified querying of XML and
did not provide for updating or deleting individual XML elements or sequences.
IBM implemented preliminary XQuery Update specifications since DB2 9.5.
Oracle Database 11g has also made functions available that allow modification of
XML documents, such as updateXML, insertXML, and deleteXML that are not part
of the ISO/IEC or W3C standard.

Consider the XML document that is shown in Example 5-13; the two examples
that follow (Example 5-14 on page 260and Example 5-15 on page 260) illustrate
the differences between Oracle Database and DB2 when you modify
XML documents.

Example 5-13 An example XML document

<studentinfo xmlns="http://posample.org" Cid="1004">
 <student studentno="1">
 <name>John Smith</name>
 <addr country="Canada">
 <street>5 College Street</street>
 <city>Toronto</city>
 <prov>Ontario</prov>
 </addr>
 <phone>X1111</phone>
 </student>
 <student studentno="2">
 <name>William Jones</name>
 Chapter 5. Application conversion 259

 <addr country="Canada">
 <street>10 University Lane</street>
 <city>Toronto</city>
 <prov>Ontario</prov>
 </addr>
 <phone>X2222</phone>
 </student>
</studentinfo>

Assume that you want to update the address of the student and remove his
phone number. In an Oracle database application, these changes can be carried
out as shown in Example 5-14.

Example 5-14 Delete/update XML elements in a document in an Oracle database

UPDATE students
SET classdatainfo = deleteXML(

updateXML(classdatainfo,
'/studentinfo/student[@studentno="2"]/addr/street/text()',
'999 College Street','http://posample.org'),

'/studentinfo/student[@studentno="2"]/phone','http://posample.org'
)
WHERE ...

In DB2, the same changes are performed by using the standard XQuery syntax,
as shown in Example 5-15.

Example 5-15 Delete/update XML elements in a document in a DB2 database

UPDATE students set classdatainfo =
XMLQUERY('declare default element namespace "http://posample.org";
transform
copy $mystudent := $s1
modify (

do replace
$mystudent/studentinfo/student[@studentno="2"]/addr/street
with <street>999 College Drive</street>,
do delete ($mystudent/studentinfo/student/phone)

)
return $mystudent'
passing CLASSDATAINFO as "s1")

WHERE ...
260 Oracle to DB2 Conversion Guide: Compatibility Made Easy

For a detailed description of DB2 pureXML features, see DB2 documentation,
particularly pureXML Guide, SC27-3892.

5.4 Converting Oracle Pro*C applications to DB2

While many aspects of DB2 application development underwent changes in
recent years (stored procedures from C/COBOL/Java to SQL procedure
language, support for PL/SQL in user-defined functions, procedures, packages,
triggers, and an enriched set of built-in functions), support for embedding SQL
into other host languages (C/C++) has not changed in a practical sense.

The Oracle embedded SQL solution is Oracle Pro*C, which supports C/C++ and
COBOL. It uses a precompiler to process SQL statements that are embedded in
the program source code.

This section explains the general procedure of converting Oracle Pro*C code to
the DB2 embedded SQL programs.

5.4.1 Connecting to the database

There is a difference in how C programs connect to the Oracle and DB2
databases. Each Oracle instance can manage only one database. DB2
instances can manage multiple databases, so the database name should be
explicitly provided by a CONNECT statement.

To connect to the Oracle database, you must specify the Oracle user and
password, while the Oracle instance (service name) is specified in the
application environment:

EXEC SQL CONNECT :user_name IDENTIFIED BY :password;

In DB2, you must specify the database name, user ID, and password. The
CONNECT statement looks like the following command:

EXEC SQL CONNECT TO :dbname USERID :user_name PASSWORD :password;

The dbname, user_name, and password must be declared as host variables.

Starting with DB2 10, the Oracle CONNECT statement syntax is also accepted
when the compatibility mode is enabled.
 Chapter 5. Application conversion 261

5.4.2 Host variable declaration

Host variables are C or C++ language variables that are referenced within SQL
statements. They allow an application to pass input data to and receive output
data from the database manager. After the application is precompiled, host
variables are used by the compiler as it uses any other C/C++ variable.

Host variables should be compatible with DB2 data types (accepted by the DB2
precompiler) and must be acceptable to the host programming
language compiler.

As the C program manipulates the values from the tables using host variables,
the first step is to ensure compatibility of DB2 and C data types.

All host variables in a C program must be declared in a special declaration
section, so that the DB2 precompiler can identify the host variables and their data
types:

EXEC SQL BEGIN DECLARE SECTION;
char emp_name[31] = {'\0'};
sqlint32 ret_code = 0;

EXEC SQL END DECLARE SECTION;

Within this declaration section, there are rules for host variable data types that
might be different from Oracle precompiler rules. Oracle precompiler permits
host variables to be declared as VARCHAR. VARCHAR[n] is a pseudo-type that is
recognized by the Pro*C precompiler. It is used to represent blank-padded,
variable-length strings. Pro*C precompiler converts it into a structure with a
2-byte length field followed by an n-byte character array. DB2 10 supports this
simple VARCHAR type declaration as well. For example:

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR emp_name [n+1];
EXEC SQL END DECLARE SECTION;

The use of a null-terminated char array (char emp_name[n+1]) is also permitted
for VARCHAR data.

Variables of user-defined types (using typedef) in PRO*C need to be converted
to the source data type. For example, type theUser_t is declared to host values
from Oracle object type:

typedef struct user_s
 {short int userNum;
 char userName[25];
 char userAddress[40];
 } theUser_t;
262 Oracle to DB2 Conversion Guide: Compatibility Made Easy

In a Pro*C program, you can have host variables that are declared as theUser_t:

EXEC SQL BEGIN DECLARE SECTION;
 theUser_t *myUser;
EXEC SQL END DECLARE SECTION;

To use this host variable for DB2, you must take it out of EXEC SQL DECLARE
SECTION and define the host variable myUser as a structure.

You can use DB2 to declare a host variable as a pointer. However, if a host
variable is declared as a pointer, no other host variable can be declared with that
same name within the same source file.

The host variable declaration char *ptr is accepted but should not point to a
null-terminated character string of an undetermined length. It is assumed that the
pointer is to a fixed-length, single-character host variable. This value might not be
what was intended for the Oracle host variable declaration.

Use sqlint32 and sqlint64 for INTEGER and BIGINT host variables. By default,
the usage of long host variables results in the precompiler error SQL0402 on
platforms where long is a 64-bit quantity, such as 64-bit UNIX. Use the PREP
option LONGERROR NO to force DB2 to accept long variables as acceptable host
variable types and treat them as BIGINT variables.

One useful DB2 type is the CLOB type, which you use if you need to deal with a
large character string. For example, you can declare:

EXEC SQL BEGIN DECLARE;
 SQL TYPE IS CLOB(200K) *statement
EXEC SQL END DECLARE SECTION;

You can later populate statement->data with, for example, a long SQL
statement, and process it.

Starting with Version 9, DB2 supports the XML type for host variables. In the
declarative section of the application, declare the XML host variables as LOB
data types, as follows:

EXEC SQL BEGIN DECLARE;
 SQL TYPE IS XML as CLOB(N) my_xml_var1;
 SQL TYPE IS XML as BLOB(N) my_xml_var2;
EXEC SQL END DECLARE SECTION;

For more information about handling XML types within C applications, see DB2
Express-C: The Developer Handbook for XML, PHP, C/C++, Java, and .NET,
SG24-7301 and Developing Embedded SQL Applications, SC27-3874.
 Chapter 5. Application conversion 263

Example 5-16 shows a fragment of PRO*C code that demonstrates array host
variables. The last statement places all 10 rows from the cursor into arrays.

Example 5-16 Array host variables in Oracle Pro*C

EXEC SQL BEGIN DECLARE SECTION;

long int dept_numb[10];
char dept_name[10][14];
char v_location[12];

EXEC SQL END DECLARE SECTION;
/* …… */

EXEC SQL DECLARE CUR1 CURSOR FOR
 SELECT DEPTNUMB, DEPTNAME
 FROM org_table
 WHERE LOCATION = :v_location;
/*……. */

EXEC SQL FETCH CUR1 INTO :dept_num, :dept_name;

DB2 10 and higher accept bulk fetch instructions when the compatibility mode is
set. Example 5-17 shows the conversion of the arrays host variable declaration
for DB2 9.x and lower.

Example 5-17 Array host variable conversion in DB2 before Version 10

EXEC SQL BEGIN DECLARE SECTION;

sqlint32 h_dept_numb = 0;
char h_dept_name[14] = {'\0'};
char v_location[12] = {'\0'};

EXEC SQL END DECLARE SECTION;
/* move array out of DECLARE section - just C variables */
long int dept_numb[10];
char dept_name[10][14];
short int i = 0;

/* …… */

EXEC SQL DECLARE CUR1 CURSOR FOR
 SELECT DEPTNUMB, DEPTNAME
 FROM org_table
 WHERE LOCATION = :v_location;
264 Oracle to DB2 Conversion Guide: Compatibility Made Easy

/*we need Fetch one row at the time and move to corresponding
 member of array */

for (i=0;i<10;i++){
 EXEC SQL FETCH CUR1 INTO :h_dept_num, :h_dept_name;
 if (SQLCODE == 100) {

break;
 }

 dept_numb[i] = h_dept_numb;
 strcpy(dept_name[i], h_dept_name);
}

5.4.3 Exception handling

The mechanisms for handling exceptions are similar in the Oracle and DB2
embedded SQL applications, using the same concept of separating error
routines from the mainline logic. There are three different WHENEVER statements
that could be used to define program behavior in case of an error in DB2:

� EXEC SQL WHENEVER SQLERROR GOTO error_routine;
� EXEC SQL WHENEVER SQLWARNING CONTINUE;
� EXEC SQL WHENEVER NOT FOUND not_found_routine;

Although the WHENEVER statement is prefixed by EXEC SQL like other SQL
statements, it is not an executable statement. Instead, a WHENEVER statement
causes the precompiler to generate code in a program to check the SQLCODE
attribute from the SQLCA (SQL Communication Area) after each SQL statement,
and to perform the action that is specified in the WHENEVER statement. SQLERROR
means that an SQL statement returns a negative SQLCODE indicating an error
condition. SQLWARNING indicates a positive SQLCODE (except +100), while NOT
FOUND specifies SQLCODE = +100, indicating that no data rows were found to
satisfy a request.

A compilation unit can contain as many WHENEVER statements as necessary, and
they can be placed anywhere in the program. The scope of one WHENEVER
statement reaches from the placement of the statement in the file onward until
the next suitable WHENEVER statement is found or the end of file is reached. No
functions or programming blocks are considered in that analysis. For example,
you might have two different SELECT statements. One statement must return at
least one row, and the other statement might not return any rows. You need two
different WHENEVER statements:

EXEC SQL WHENEVER NOT FOUND GOTO no_row_error;
 EXEC SQL SELECT address
 Chapter 5. Application conversion 265

 INTO :address
 FROM test_table
 WHERE phone = :pnone_num;
 ……..
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 EXEC SQL SELECT commis_rate
 INTO :rate :rateind
 WHERE prod_id = :prodId;
 if (rateind == -1) rate = 0.15;
 ……

Convert the DO and STOP Oracle keywords in a WHENEVER statement to GOTO.

Another alternative is to check SQLCODE explicitly after each EXEC SQL statement
because that allows more context-sensitive error handling.

5.4.4 Error messages and warnings

The SQL Communication Area (SQLCA) data structure in DB2 is similar to the
same structure of an Oracle database. SQLCA provides information for
diagnostics and event handling.

To get the full text of longer or nested error messages, you must use the
sqlglm() function:

sqlglm(message_buffer, &buffer_size, &message_length);

message_buffer is the character buffer in which you want the Oracle driver to
store the error message, buffer_size specifies the size of message_buffer in
bytes, and the actual length of the error message is placed in *message_length.
The maximum length of an Oracle error message is 512 bytes.

DB2 provides a special runtime API function to return an error message that is
based on SQLCODE:

rc=sqlaintp(msg_buffer, 1024, 80, sqlca.sqlcode);

80 stands for the number of characters after which a line break is inserted in the
message. DB2 searches for word boundaries to place such a line break. 1024
specifies the length of the message buffer, for example, char msg_buffer[1024].
As a result of starting this function, the allocated buffer contains the descriptive
error message, for example:

SQL0433N Value "TEST VALUES" is too long. SQLSTATE=22001.
266 Oracle to DB2 Conversion Guide: Compatibility Made Easy

If you need more information about a particular error, DB2 provides an API
function that returns an extended message that is associated with the
specific SQLSTATE:

rc=sqlogstt(msg_sqlstate_buffer, 1024, 80, sqlca.sqlcode);

As a result of starting this function, char msg_sqlstate_buffer[1024] contains,
for example, the following message:

SQLSTATE 22001: Character data, right truncation occurred; for example,
an update or insert value is a string that is too long for the column,
or datetime value cannot be assigned to a host variable, because it is
too small.

5.4.5 Passing data to a stored procedure from a C program

To start a remote database procedure, which can be part of a PL/SQL package,
in an Oracle embedded SQL application, use the following statements:

EXEC SQL EXECUTE
 BEGIN
 Package_name.SP_name(:arg_in1, :arg_in2, :status_out);
 END;
END-EXEC;

The value transfer between the calling environment and the stored procedure
can be achieved through arguments. You can choose one of the following modes
for each argument:

� IN
� OUT
� INOUT

For example, declare the previous stored procedure as follows:

CREATE PACKAGE package_name IS
 PROCEDURE SP_name(
 arg_in1 IN NUMBER ,
 arg_in2 IN CHAR(30),
 status_out OUT NUMBER);
END;

When this stored procedure is start, values that are passed from the calling
program are accepted by the stored procedure.
 Chapter 5. Application conversion 267

A DB2 client application start a stored procedure by using the CALL statement,
which can pass parameters to the stored procedure and receive parameters that
are returned from the stored procedure. Using the previous example, it uses the
following syntax:

EXEC SQL CALL package_name.SP_name (:arg_in1, :arg_in2, :status_out);

As with all SQL statements, you can also prepare the CALL statement with
parameter markers and then supply values for the markers using SQLDA:

EXEC SQL CALL package_name.SP_name USING DESCRIPTOR :*psqlda;

You must set up the SQL Data Area (SQLDA) before use. SQLDA can be helpful if
you have an unknown number of host variables or many variables.

To start a stored procedure from a C client, the following items need to be
in place:

� A stored procedure needs to be created and registered with the database.

� A host variable for each IN and INOUT parameter of the stored procedure
should be declared and initialized.

Consider Example 5-18, in which the program is written to give a raise to each
employee whose current salary is less than certain value. The program passes
that value to a stored procedure, performs an update, and returns the status. The
client code in C looks as shown in Example 5-18.

Example 5-18 Passing data to a stored procedure

#include <sqlenv.h>

main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 Sqlint32 salary_val=0;
 Sqlint16 salind=1;
 Sqlint16 status=0;
 Sqlint16 statind=0;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLCA;
 EXEC SQL CONNECT TO sample;
 EXEC SQL WHENEVER SQLERROR GOTO err_routine;

 salary_val = getSalaryForRaise();
 statind = -1; /* set indicator variable to -1 */
 /* for status as output-only variable */
268 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 EXEC SQL CALL raiseSal(:salary_val :salind, :status :statind);
 if (status == 0){
 printf (" The raises has been successfully given \n ");
 EXEC SQL COMMIT;
 }
 else
 if (status ==1)
 printf (" NO input values has been provided.\n ");
 else
 if (status == 2)
 printf("Stored procedure failed.\n");

 err_routine:
 printf (" SQL Error, SQLCODE = \n ", SQLCODE);
 EXEC SQL ROLLBACK;
}

All host variables that are used as parameters in the statement are declared and
initialized in EXEC SQL DECLARE SECTION.

5.4.6 Building a C/C++ DB2 application

DB2 provides sample build scripts for precompiling, compiling, and linking
C-embedded SQL programs. These scripts are in the sqllib/samples/c
directory, along with sample programs that can be built with these files. This
directory also contains the embprep script that is used within the build script to
precompile an *.sqc file.

To help you compile and link the source files, build files are provided for each
language on supported platforms where the types of programs they build are
available in the same directory as the sample programs for each language.
These build files, unless otherwise indicated, are for supported languages on all
supported platforms. The build files have the .bat (batch) extension on Windows,
and have no extension on UNIX platforms. For example, bldmapp.bat is a script
to build C/C++ applications on Windows.

The utilemb.sqc and utilemb.h files contain functions for error handling.
Compile and link these utility functions along with the target application sources.
Both the makefile and build files in the sample directories perform this task for the
programs that require error-checking utilities.

For more information about building C applications, see Developing Embedded
SQL Applications, SC27-3874.
 Chapter 5. Application conversion 269

5.5 Converting Oracle Java applications to DB2

For Java programmers, DB2 offers the following programming interfaces:

� JDBC is a mandatory component of the Java programming language as
defined in the Java 2, Standard Edition (J2SE) specification. To enable JDBC
applications for DB2, an implementation of the various Java classes and
interfaces, as defined in the standard, is required. This implementation is
known as a JDBC driver. DB2 offers a complete set of JDBC drivers for this
purpose. They are distributed as a package called IBM Data Server Driver
for JDBC and SQLJ (JCC Driver).

� SQLJ is a standard development model for embedding SQL statements in
Java applications. The SQLJ API is defined in the SQL 1999 specification.
The IBM Data Server Driver for JDBC and SQLJ provides support for both
JDBC and SQLJ APIs in a single implementation. JDBC and SQLJ can be
used by the same application. SQLJ provides the unique ability to develop
using static SQL statements and control access at the DB2 package level.

The Java code conversion is straightforward. The API itself is well-defined and
database independent. For example, the database connection logic is
encapsulated in standard J2EE DataSource objects. The Oracle or DB2 specific
components, such as user name and database name, are then configured
declaratively within the application.

However, you must change your Java source code with regard to:

� The API driver name (JDBC or SQLJ)
� The database connect string (JDBC URL)
� Any incompatible SQL statements
� Vendor-specific extensions to the JDBC API used in the application

DB2 provides a different method for optimizer directives, but tolerates and
ignores Oracle optimizer hints that appear in SQL statements. Although it is not
necessary to remove these hints, you should consider doing so to reduce the
complexity of your source code.

For complete information about the Java environment, drivers, programming, and
other relevant information, see Developing Java Applications, SC27-3875-00.
270 Oracle to DB2 Conversion Guide: Compatibility Made Easy

5.5.1 Java access methods to DB2

DB2 has rich support for the Java programming environment. You can access
DB2 data by putting the Java class in to a module in one of the following ways:

� DB2 Server

– Stored procedures (JDBC or SQLJ)
– User-defined functions (JDBC or SQLJ)

� J2EE Application Servers (such as IBM WebSphere® Application Server)

– JavaServer Pages (JSPs) (JDBC)
– Servlets (SQLJ or JDBC)
– Enterprise JavaBeans (EJBs) (SQLJ or JDBC)

5.5.2 JDBC driver for DB2

The IBM Data Server Driver for JDBC and SQLJ supports:

� All of the methods that are described in the JDBC 3.0 and
JDBC 4.0 specifications.

� SQLJ statements that perform equivalent functions to most JDBC methods.

� Connections that are enabled for connection pooling. WebSphere Application
Server or another application server implement the connection pooling.

� Java user-defined functions and stored procedures (IBM DB2 Driver for JDBC
and SQLJ type 2 connectivity only).

� Global transactions that run under WebSphere Application Server Version 5.0
and later.

� Support for distributed transaction management. This support implements the
Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS),
and Java Transaction API (JTA) specifications, which conform to the X/Open
standard for distributed transactions.

Type 4 connectivity
For IBM DB2 Driver for JDBC and SQLJ Type 4 connectivity, the getConnection
method must specify a user ID and a password through parameters or through
property values. See Example 5-19.

Example 5-19 getConnection syntax for Type 4 connectivity

getConnection(String url, user, password);
getConnection(String url, java.util.Properties info);
 Chapter 5. Application conversion 271

The following is the syntax for a URL for IBM DB2 Driver for JDBC and SQLJ
Type 4 connectivity.

>>-+-jdbc:db2:------+-//server--+-------+--/database------------>
 '-jdbc:db2j:net:-' '-:port-'

>--+-----------------------------+-----------------------------><
 | .-----------------------. |
 | V | |
 '-:---property--=--value--;-+-'

Example 5-20 shows how to set the user ID and password in the user and
password parameters.

Example 5-20 Setting the user ID and password in the user and password parameters

// Set URL for data source
String url = "jdbc:db2://puma.torolab.ibm.com:50000/sample";
// Create connection
String user = "db2inst1";
String password = "db2inst1";
Connection con = DriverManager.getConnection(url, user, password);

5.5.3 JDBC driver declaration

Oracle provides a JDBC OCI driver, among many other JDBC drivers, to enable
a Java application to use OCI to access the Oracle database through SQL*NET.
In this case, the C layer talks to the Oracle database and then returns to the Java
layer. To connect from a Java application to an Oracle database using the OCI
driver, complete the following steps:

1. Import the Oracle driver.
2. Register the driver manager.
3. Connect with a user ID, the password, and the database name.

Example 5-21 shows an Oracle JDBC connection through OCI.

Example 5-21 Oracle JDBC connection

import java.sql.*;
import java.io.*;
import oracle.jdbc.driver.*;

class rsetClient
{
 public static void main (String args []) throws SQLException
272 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 {
 // Load the driver
 DriverManager.registerDriver(new
oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 Connection conn =
 DriverManager.getConnection
("jdbc:oracle:oci8:@oracle","uid","pwd");

 // ...
 }
}

DB2 does not support the JDBC OCI driver. You do not need to run a Java
application using OCI, even though DB2 provides OCI support since DB2 9.7 Fix
Pack 1. Previous versions of DB2 JDBC drivers used DB2 Call Level Interface to
communicate with the database manager, but the newer DB2 JCC Driver is
rewritten to eliminate the DB2 Call Level Interface layer. It is a pure Java
implementation of the IBM DRDA® communication protocol.

If an Oracle application is using the Oracle JDBC OCI driver, you can change it
directly to use the JCC driver. It is not necessary to import a JDBC library when
you connect to DB2. The registration and connection to DB2 is demonstrated in
Example 5-22. The parameters for the getConnection method are determined by
the connection type.

Example 5-22 DB2 JDBC connection

import java.sql.*;

class rsetClient
{

public static void main (String args []) throws SQLException {

// Load DB2 JDBC application driver
try
{
// IBM Data Server Driver for JDBC and SQLJ

Class.forName("com.ibm.db2.jcc.DB2Driver");
}
catch (Exception e)
{

e.printStackTrace();
}

 Chapter 5. Application conversion 273

// Connect to the database
Connection conn =
DriverManager.getConnection("jdbc:db2://hostname:50000/dbname"

,"uid","pwd");
 // ...
 }
}

5.5.4 New binary XML API

Starting with DB2 10, the communication protocol allows transferring XML data in
binary (XDBX) format, which allows applications that are aware of the new JDBC
API to increase performance of the XML data type manipulation

For JDBC and SQLJ applications, you can now choose to transmit data to and
from a DB2 10.5 server in binary XML format. For applications that work with
data in a non-textual representation, such as those using SAX or StAX objects,
the binary format provides a faster way to transmit and receive XML data. In
earlier releases, only character-based representation of XML data was
supported. Now you can use whichever format best suits your data processing
needs. Binary XML format is only used for data transmission. XML data continue
to be stored in the database as before in the pre-parsed hierarchical form.

For JDBC and SQLJ applications that work with data in a non-textual
representation, binary XML format eliminates unnecessary XML parsing and
serialization costs, therefore improving performance. For example, you should
see performance improvements if your application uses any of the following
methods to retrieve and update XML data:

� getSource(SAXSource.class), getSource(StAXSource.class)
� setResults(SAXResults.class), setResults(StAXResult.class)

The degree of performance improvement also depends on the structure of the
XML documents, the length of tags, the number of repeating tags, and the depth
of data within the document.

To benefit from the new binary XML format, you must use Version 4.9, or later, of
the IBM Data Server Driver for JDBC and SQLJ and connect to DB2 10.1, or
later, server. For SQLJ applications, you also must use Version 4.9, or later, of
the sqlj4.zip package.
274 Oracle to DB2 Conversion Guide: Compatibility Made Easy

For JDBC and SQLJ applications that use Version 4.9, or later, of the IBM Data
Server Driver for JDBC and SQLJ, binary XML is the default format when the
application connects to a DB2 10.1 or later release server. You can use the
xmlFormat property in the DriverManager and DataSource interfaces to control
whether the transmission of XML data is in textual or binary format.

You can use binary XML format with any valid SQL/XML or XQuery statements,
as shown in Example 5-23.

Example 5-23 Enable XML binary usage with JDBC driver

...
properties.put("xmlFormat", DB2BaseDataSource.XML_FORMAT_BINARY);
DriverManager.getConnection(url, properties);
...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT XMLCOL FROM XMLTABLE");
ContentHandler handler = new MyContentHandler();
while (rs.next()) {

SQLXML sqlxml = rs.getSQLXML(1);
SAXSource source = sqlxml.getSource(SAXSource.class);
XMLReader reader = source.getXMLReader();
reader.setContentHandler(handler);
reader.parse(source.getInputSource());

}
...

For more information, go to:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%
2Fcom.ibm.db2.luw.xml.doc%2Fdoc%2Fc0056290.html

5.5.5 Stored procedure calls

The handling of input and output parameters in stored procedures calls differ
between the Oracle and DB2 databases. The following examples explain the
different kinds of procedure calls and the usage of parameters and result sets.

Stored procedure with an input parameter
A stored procedure was created in an Oracle database as follows:

CREATE OR REPLACE PROCEDURE sproc1(
in_parm1 IN INTEGER, out_parm2 OUT VARCHAR2)

The same procedure appears in a DB2 database.
 Chapter 5. Application conversion 275

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=%2Fcom.ibm.db2.luw.xml.doc%2Fdoc%2Fc0056290.html

The procedure has one input parameter and one output parameter. There is no
difference in the call between the two database platforms. In both cases, the
parameter values need to be set before the stored procedure can be run.
Example 5-24 demonstrates this point.

Example 5-24 Calling a stored procedure with input and output parameters from Java

String procName = "sproc1"
String SP_CALL = "call " + procName + "(:in_parm1, :out_parm2)";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

CallableStatement stmt;
try {
 stmt = conn.prepareCall(SP_CALL);
 stmt.setInt(1,10);
 stmt.registerOutParameter(2, Types.VARCHAR);
 stmt.execute();
 // ...
}

Stored procedure with a result set
The next example shows a procedure that does not have an input parameter, but
defines a result set as an output parameter. The result set is CURSOR defined
and opened in the procedure. The rows are fetched in the Java application with
a loop.

The Oracle stored procedure is defined as:

CREATE OR REPLACE PROCEDURE sproc2(oCursor OUT SYS_REFCURSOR) AS
BEGIN
 open oCursor for select last_name from employees;
END;

The output parameter type is registered as CURSOR before the procedure is
called. See Example 5-25.

Example 5-25 Java call of Oracle procedure with result set

String SP_CALL = "{call sproc2(?)}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);
276 Oracle to DB2 Conversion Guide: Compatibility Made Easy

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 stmt.registerOutParameter (1, OracleTypes.CURSOR);
 stmt.execute();
 ResultSet rs = (ResultSet) stmt.getObject(1);
 while(rs.next())
 {

System.out.println(rs.getString(1));
// ...

 }
}

With DB2 9.7, when you use the CURSOR type, you register the output
parameter as a similar DB2Type. See Example 5-26.

Example 5-26 Java call of DB2procedure with result set

String SP_CALL = "{call sproc2(?)}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 stmt.registerOutParameter (1, DB2Types.CURSOR);
 stmt.execute();
 ResultSet rs = (ResultSet) stmt.getObject(1);
 while(rs.next())
 {

System.out.println(rs.getString(1));
// ...

 }
}

 Chapter 5. Application conversion 277

If you are not using the output parameter of CURSOR type, then you do not need
to register the result set with the registerOutParameter() method in the Java
application. To get the result set, call the getResultSet() method instead of
getObject(), as demonstrated in Example 5-27.

Example 5-27 Java call of DB2 procedure with result set

String SP_CALL = "{call sproc2}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 ResultSet rs = null;
 stmt.execute();
 rs = stmt.getResultSet();
 while(rs.next())
 {

System.out.println(rs.getString(1));

 // ...
 }
}

Function returning cursor type
A function can return a cursor, just like a procedure, as described in “Stored
procedure with a result set” on page 276. Consider a PL/SQL function defined
as follows:

CREATE TYPE CursorType IS REF CURSOR;
CREATE OR REPLACE FUNCTION sfunc4(v_num IN INTEGER)
 RETURN CursorType

In an Oracle application, you can retrieve the cursor ResultSet in Java with a
special syntax, for example, SP_CALL (shown in Example 5-28).

Example 5-28 Oracle function with input parameter and result set

String SP_CALL = "{? := call sfunc4(?)}";

// Connect to the database
Connection conn =
 DriverManager.getConnection (url, userName, password);

278 Oracle to DB2 Conversion Guide: Compatibility Made Easy

try {
 CallableStatement stmt = conn.prepareCall(SP_CALL);
 stmt.registerOutParameter (1, OracleTypes.CURSOR);
 stmt.setInt(2, 6);
 stmt.execute();
 ResultSet rs = (ResultSet) stmt.getObject(1);
 while(rs.next())
 {
 // ...
 }
}

To call a function that returns a cursor directly with the DB2 JDBC driver, convert
the Oracle function to a stored procedure in DB2. To avoid changes to the
function source code, you can also wrap the existing function into a procedure
that returns the cursor as an output parameter. Example 5-29 illustrates a
function wrapper.

Example 5-29 Function wrapper

CREATE OR REPLACE PROCEDURE myfunction_wrapper(C OUT sys_refcursor
,arg1, ...argn) IS
 BEGIN
 c:= myfuntion(arg1, ...argn);
 END;
/

CREATE OR REPLACE FUNCTION myfunction(arg1, ...argn) IS
 BEGIN
 ...UDF logic here...
 ENd;
/

5.6 Converting Oracle Call Interface applications

In DB2 9.7 and later, the DB2 Call Interface (DB2CI) provides compatibility for the
Oracle Call Interface (OCI). OCI is one of the many programming interfaces that
are used by C/C++ developers to create applications for Oracle databases. The
support for Oracle OCI applications is provided by the IBM Data Server Driver for
DB2CI, which is part of the IBM Data Server Driver Package. In addition, DB2CI
provides a tracing facility for application development.
 Chapter 5. Application conversion 279

The DB2CI driver provides extensive support for the commonly used OCI
functions. The OCI functions include connection, initializations, handle and
descriptor function, binding, define, statement, execution, result set, transaction
control, data type (NUMBER, STRING, and DATE) functions, date and time,
large object processing, arrays, stored procedure executions, and file I/O. These
supported functions have a syntax that is compatible with the Oracle
OCI functions.

The DB2CI driver is evolving and provides the OCI functions listed in Table 5-2 in
the current release of the DB2 OCI driver (DB2 10.5). The list can be expanded
but is accurate at the time of the writing of this book.

Table 5-2 DB2 OCI-compatible functions

OCIAttrGet OCILobGetLength OCINumberTan

OCIAttrSet OCILobIsEqual OCINumberToInt

OCIBindArrayOfStruct OCILobIsTemporary OCINumberToReal

OCIBindByName OCILobIsOpen OCINumberToRealArray

OCIBindByPos OCILobLocatorAssign OCINumberToText

OCIBindDynamic OCILobLocatorIsInit OCINumberTrunc

OCIBreak OCILobRead OCIParamGet

OCIClientVersion OCILobTrim OCIParamSet

OCIDateAddDays OCILobWrite OCIPasswordChange

OCIDateAddMonths OCILogoff OCIPing

OCIDateAssign OCILogon OCIRawAllocSize

OCIDateCheck OCILogon2 OCIRawAssignBytes

OCIDateCompare OCINumberAbs OCIRawAssignRaw

OCIDateDaysBetween OCINumberAdd OCIRawPtr

OCIDateFromText OCINumberArcCos OCIRawResize

OCIDateLastDay OCINumberArcSin OCIRawSize

OCIDateNextDay OCINumberArcTan OCIReset

OCIDateSysDate OCINumberArcTan2 OCIResultSetToStmt

OCIDateToText OCINumberAssign OCIServerAttach

OCIDefineArrayOfStruct OCINumberCeil OCIServerDetach
280 Oracle to DB2 Conversion Guide: Compatibility Made Easy

OCIDefineByPos OCINumberCmp OCIServerVersion

OCIDefineDynamic OCINumberCos OCISessionBegin

OCIDescribeAny OCINumberDec OCISessionEnd

OCIDescriptorAlloc OCINumberDiv OCISessionGet

OCIDescriptorFree OCINumberExp OCISessionRelease

OCIEnvCreate OCINumberFloor OCIStmtExecute

OCIEnvInit OCINumberFromInt OCIStmtFetch

OCIErrorGet OCINumberFromReal OCIStmtFetch2

OCIFileClose OCINumberFromText OCIStmtGetBindInfo

OCIFileExists OCINumberHypCos OCIStmtGetPieceInfo

OCIFileFlush OCINumberHypSin OCIStmtPrepare

OCIFileGetLength OCINumberHypTan OCIStmtPrepare2

OCIFileInit OCINumberInc OCIStmtRelease

OCIFileOpen OCINumberIntPower OCIStmtSetPieceInfo

OCIFileRead OCINumberIsInt OCIStringAllocSize

OCIFileSeek OCINumberIsZero OCIStringAssign

OCIFileTerm OCINumberLn OCIStringAssignText

OCIFileWrite OCINumberLog OCIStringPtr

OCIHandleAlloc OCINumberMod OCIStringResize

OCIHandleFree OCINumberMul OCIStringSize

OCIInitialize OCINumberNeg OCITerminate

OCILobAppend OCINumberPower OCITransCommit

OCILobAssign OCINumberPrec OCITransDetach

OCILobClose OCINumberRound OCITransForget

OCILobCopy OCINumberSetPi OCITransMultiPrepare

OCILobCreateTemporary OCINumberSetZero OCITransPrepare

OCILobDisableBuffering OCINumberShift OCITransRollback

OCILobEnableBuffering OCINumberSign OCITransStart
 Chapter 5. Application conversion 281

If your application uses OCI calls that are not currently available in DB2, you can
replace them using combinations of supported calls.

Because the DB2CI provides a high level of compatibility with Oracle OCI calls,
you need only to compile and link the application using the DB2 specific include
file db2ci.h and the DB2CI library, for example, libdb2ci.a on AIX. A sample
DB2 OCI program is provided in Appendix D, “DB2CI sample program” on
page 345.

5.7 Converting Open Database Connectivity
applications

Open Database Connectivity (ODBC) is similar to the DB2 Call Level Interface
(DB2 CLI). Applications that are based on ODBC can connect to the most
popular databases. Thus, the ODBC application conversion is relatively simple.
All the ODBC Core Level, Level 1, and Level 2 functions are supported in DB2
CLI, except for SQLDriver. The SQL data types that are defined in DB2 DB2 CLI
are the same as the ODBC data types.

You might have to convert the following types of vendor-specific features in
your application:

� Non-standard SQL statement syntax
� Possible changes in calling stored procedures and functions
� Possible logic changes because of the different concurrency models

Your current development environment remains the same. For a more detailed
description of the necessary steps, see 5.2, “Application enablement planning”
on page 249.

5.7.1 Introduction to DB2 CLI

DB2 Call Level Interface (DB2 CLI) is a callable SQL interface to the DB2 family
of database servers. It is a C and C++ API for relational database access that
uses function calls to pass dynamic SQL statements as function arguments. It is
an alternative to embedded dynamic SQL, but unlike embedded SQL, DB2 CLI
does not require the use of host variables or a precompiler.

OCILobErase OCINumberSin xaoEnv

OCILobFreeTemporary OCINumberSqrt xaosterr

OCILobFlushBuffer OCINumberSub xaoSvcCtx
282 Oracle to DB2 Conversion Guide: Compatibility Made Easy

DB2 CLI is based on the Microsoft Open Database Connectivity (ODBC)
specification and the International Standard for SQL/CLI. These specifications
were chosen as the basis for the DB2 Call Level Interface to follow industry
standards and to provide a shorter learning curve for application programmers
already familiar with either of these database interfaces. In addition, some DB2
specific extensions were added to help the application programmer specifically
use unique DB2 features.

The DB2 CLI driver also acts as an ODBC driver when loaded by an ODBC
driver manager. It conforms to ODBC V3.51.

5.7.2 Setting up the DB2 CLI environment

Runtime support for DB2 CLI applications is contained in the IBM Data Server
Driver Package (DS Driver), IBM Data Server Driver for ODBC and CLI (CLI
Driver), and IBM Data Server Runtime Client. Support for building and running
DB2 CLI applications is contained in the IBM Data Server Client.

The DB2 CLI/ODBC driver automatically binds on the first connection to the
database, provided the user has the appropriate privilege or authorization. The
administrator might want to perform the first connection or explicitly bind the
required packages.

Procedure
For a DB2 CLI application to access a DB2 database successfully, complete the
following steps:

1. Catalog the DB2 database and node if the database is being accessed from a
remote client. On the Windows platform, you can use the DB2 CLI/ODBC
settings GUI to catalog the DB2 database.

2. Optional: Explicitly bind the DB2 CLI/ODBC bind files to the database by
running the following command:

db2 bind ~/sqllib/bnd/@db2cli.lst blocking all messages cli.msg\
grant public

On the Windows platform, you can use the DB2 CLI/ODBC settings GUI to
bind the DB2 CLI/ODBC bind files to the database.

3. Optional: Change the DB2 CLI/ODBC configuration keywords by editing the
db2cli.ini file.

On the Windows platform, you can use the DB2 CLI/ODBC settings GUI to
set the DB2 CLI/ODBC configuration keywords.
 Chapter 5. Application conversion 283

5.8 Converting Perl applications

You can use Perl to connect to Oracle and DB2 databases. The examples in this
section create a stored procedure and a Perl program to demonstrate the
following syntactical differences between the Oracle and DB2 databases:

� Connecting to a database using Perl
� Calling a stored procedure with an input and an output parameter
� Returning an output parameter

Example 5-30 is an Oracle stored procedure named Greeting. It contains an
input parameter name, and an output parameter message.

Example 5-30 Oracle stored procedure named Greeting

CREATE OR REPLACE PROCEDURE Greeting (name IN VARCHAR2, message OUT
VARCHAR2)
AS
BEGIN

message := 'Hello ' || UPPER(name) ||', the date is: ' || SYSDATE;
END;

Example 5-31 shows the oraCallGreeting.pl Perl program. This program
connects to the Oracle database, binds the input and output parameters, run the
call to the Greeting stored procedure, and returns the output parameter.

Example 5-31 Oracle Perl program oraCallGreeting.pl

#!/usr/bin/perl
use DBI;

$database='dbi:Oracle:xp10g';
$user='sample';
$password='sample';

$dbh = DBI->connect($database,$user,$password);
print " Connected to database.\n";

$name = 'Ariel';
$message;

$sth = $dbh->prepare(q{
 BEGIN
 Greeting(:name, :message);

END;
284 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 });

$sth->bind_param(":name", $name);
$sth->bind_param_inout(":message", \$message, 100);
$sth->execute;
print "$message", "\n";

 # check for problems ...
 warn $DBI::errstr if $DBI::err;

$dbh->disconnect;

The results of the execution of oraCallGreeting.pl are shown in Figure 5-3.

Figure 5-3 The result of running the oraCallGreeting.pl Perl program

This section demonstrates how to connect to DB2 using Perl.

Example 5-32 is a DB2 stored procedure that has the same function and same
name as the Oracle stored procedure described earlier. Because DB2 also
supports the Oracle PL/SQL syntax, the procedure looks the same.

Example 5-32 DB2 stored procedure named Greeting

CREATE OR REPLACE PROCEDURE Greeting (name IN VARCHAR2, message OUT
VARCHAR2)
 AS
BEGIN
message := 'Hello ' || UPPER(name) ||', the date is: ' || SYSDATE;
END;
 Chapter 5. Application conversion 285

Minor changes might be necessary to convert the Oracle Perl application to use
DB2. In addition to entering the correct values for the user ID and password, you
must complete the following steps:

� Observe the syntax difference in the parameters for the connect method and
make the necessary changes.

� Observe the syntax differences for calling stored procedures and make the
necessary changes.

5.8.1 DB2 Connect method syntax

The syntax for a database connection to DB2 is shown in Example 5-33.

Example 5-33 Generic syntax for a DB2 connection string in a Perl application

$dbhandle = DBI->connect(‘dbi:DB2:dbalias’, $userID, $password)

The parameters of this connection are as follows:

� dbhandle: Represents the database handle returned by the
connect statement.

� dbalias: Represents a DB2 alias that is cataloged in the DB2
database directory.

When you connect to an Oracle database, the sid of the database is used in
the place where DB2 would require dbalias; the Oracle syntax can be
summarized as dbi:Oracle:sid. In our example, this is coded as
dbi:Oracle:xp10g.

� userID: Represents the user ID used to connect to the database.

� password: Represents the password for the user ID that is used to connect to
the database.

5.8.2 Syntax for calling a DB2 stored procedures

In an Oracle Perl application, a stored procedure is called from an anonymous
block, that is, BEGIN...END; within a PREPARE statement. The input and output
parameters of the Oracle stored procedure are defined as host variables, for
example, :name, :message. Example 5-34 demonstrates these points.

Example 5-34 Calling a stored procedure in an Oracle Perl program

$sth = $dbh->prepare(q{
BEGIN
286 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Greeting(:name, :message);
END;

});

In contrast, a DB2 stored procedure is run by issuing a CALL statement from
within a PREPARE statement. Also, the stored procedure input and output
parameters are indicated by parameter markers (?, ?), as shown in
Example 5-35.

Example 5-35 Calling a stored procedure in a DB2 Perl program

$sth = $dbh->prepare(q{
 CALL Greeting(?,?);
});

The complete Perl program, converted to DB2, is shown in Example 5-36.

Example 5-36 DB2 Perl program db2CallGreeting.pl

#!/usr/bin/perl
use DBI;

$database='dbi:DB2:sample';
$user='db2inst1';
$password='db2inst1';

$dbh = DBI->connect($database, $user, $password) or die "Can’t connect
to $database: $DBI::errstr";

print " Connected to database.\n";

$name = 'Ariel';
$message;

$sth = $dbh->prepare(q{
 CALL Greeting(?,?);
 });

$sth->bind_param(1,$name);

$sth->bind_param_inout(2, \$message, 100);

$sth->execute;

 print "$message", "\n";
 Chapter 5. Application conversion 287

 # check for problems...
warn $DBI::errstr if $DBI::err;

$sth-> finish;

$dbh->disconnect;

The results of running db2CallGreeting.pl are shown in Figure 5-4.

Figure 5-4 The results of running the db2CallGreeting.pl program

5.9 Converting PHP applications

Oracle supports access to Oracle databases in a PHP application through
two extensions:

� PDO_OCI

The PDO_OCI driver implements the PHP Data Objects (PDO) interface to
enable access from PHP to Oracle databases through the OCI library.

� OCI8

The functions in this extension allow access to Oracle 9, Oracle 10, and
earlier using the Oracle Call Interface (OCI). They support binding of PHP
variables to Oracle placeholders, have full LOB, FILE, and ROWID support,
and allow you to use user-supplied define variables. This extension is the
preferred one for PHP connections to an Oracle database.
288 Oracle to DB2 Conversion Guide: Compatibility Made Easy

5.9.1 Connecting to Oracle using PDO

Example 5-37 shows the oraGreeting.php Oracle PHP program. This program
connects to the Oracle default database, because the optional dbname is not
specified after OCI.

Example 5-37 Connecting to Oracle using PDO

<?php
try {
 $dbh = new PDO('OCI:', 'userid', 'password');
 echo "Connected\n";
} catch (Exception $e) {
 echo "Failed: " . $e->getMessage();
}
?>

5.9.2 Connecting to DB2 using PDO

Because there is no PDO OCI interface access for DB2, we use the PDO_ODBC
driver. The PDO_ODBC implements the PHP Data Objects (PDO) interface to
enable access from PHP to databases through ODBC drivers or through the IBM
DB2 Call Level Interface (DB2 CLI) library. DB2 connections are established by
creating an instance of the PDO class. Only the data source name is mandatory.
However, you can pass its user ID, password, and more parameters for passing
in tuning information. The program that is shown in Example 5-38 connects to the
DB2 sample database.

Example 5-38 Connecting to DB2 using PDO

<?php
try {
 $dbh = new PDO('odbc:SAMPLE', 'userid', 'password');
 echo "Connected\n";
} catch (Exception $e) {
 echo "Failed: " . $e->getMessage();
}
?>
 Chapter 5. Application conversion 289

Example 5-39 shows the call to the Greeting procedure after the connection
is established.

Example 5-39 Call a PHP procedure

$stmt = $dbh->prepare("CALL Greeting(? ,?)");
$name = ‘Ariel’;
$stmt->bindParam(1, $name, PDO_PARAM_STR, 100);
$stmt->bindParam(2, $return_msg, PDO_PARAM_OUTPUT, 100);
$stmt->execute();

Information regarding the PHP extensions that are available for DB2 are
described in 5.1.1, “Driver support” on page 244.

The following section contains a sample program that demonstrates differences
between PHP programming for Oracle Database and DB2. This sample program
uses the same stored procedure, Greeting, that was shown in 5.8, “Converting
Perl applications” on page 284.

5.9.3 Connecting to an Oracle database using PHP (OCI8)

Example 5-40 shows the oraGreeting.php Oracle PHP program. This program
connects to the Oracle database using the OCI8 Extension Module, binds the
input and output parameters, runs the call to the Greeting stored procedure, and
returns the output parameter.

Example 5-40 Oracle PHP program oraGreeting.php

<?php
$conn = oci_connect("userid","password") or die;

$sql = "BEGIN Greeting(:name, :message); END;";

$stmt = oci_parse($conn,$sql);

// Bind the input parameter
oci_bind_by_name($stmt,":name",$name,32);

// Bind the output parameter
oci_bind_by_name($stmt,":message",$message,100);

// Assign a value to the input
$name = "Ariel";

oci_execute($stmt);
290 Oracle to DB2 Conversion Guide: Compatibility Made Easy

// $message is now populated with the output value
print "$message\n";
?>

The result of running oraGreeting.php is shown in Figure 5-5.

Figure 5-5 The result of running oraGreeting.php

5.9.4 Connecting PHP applications to a DB2 database

Two extensions, ibm_db2 and PDO_ODBC, can be used to access DB2 databases
from a PHP application. For more information, see “PHP extensions” on
page 245. For the DB2 conversion of the Oracle PHP program that is shown in
Example 5-40 on page 290, we used the ibm_db2 extension.

Example 5-41 shows the source code for this converted program.

Example 5-41 DB2 PHP program db2Greeting.php

<?php
$database = 'sample';
$user = 'db2inst1';
$password = 'db2inst1';
// Next parameters used when making an uncataloged connection
// $hostname = 'localhost';
// $port = 50000;

$conn = db2_connect($database, $user, $password) or die;

// use this connection string for uncataloged connections:
//$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;
//HOSTNAME=$hostname;PORT=$port;PROTOCOL=TCPIP;UID=$user;PWD=$passwo//r
d;";

// $conn = db2_connect($conn_string, ‘’, ‘’);

if ($conn) {
 Chapter 5. Application conversion 291

 //echo "Connection succeeded.
\n";

 $sql = 'CALL Greeting(?, ?)';
 $stmt = db2_prepare($conn, $sql);

 $name = 'Ariel';
 $message = '';

 db2_bind_param($stmt, 1, "name", DB2_PARAM_IN);
 db2_bind_param($stmt, 2, "message", DB2_PARAM_OUT);

db2_execute($stmt);

 // $message is now populated with the output value
print "$message\n";
}

?>

As shown in this example, you must complete a few changes before the
application can use DB2. These changes can be summarized by observing the
differences between the following functions:

� oci_connect and db2_connect
� oci_bind_by_name and db2_bind_param
� oci_parse and db2_prepare

The oci_connect and db2_connect functions
The oci_connect function takes the following required and optional parameters
(shown in []):

(string $username, string $password [, string $db [, string $charset [,
int $session_mode]]])

Replace the oci_connect function with the db2_connect function, which takes the
following required and optional (shown in []) parameters:

(string database, string username, string password, [array options])

Parameter note: Database ($db) is an optional parameter. If the database is
not specified, PHP uses the environment variables ORACLE_SID and TWO_TASK
to determine the name of the local Oracle instance and the location of the
tnsnames.ora file.
292 Oracle to DB2 Conversion Guide: Compatibility Made Easy

When you connect to DB2 in a PHP application, the connection can be made to
either a cataloged or an uncataloged database.

For an uncataloged connection to a database, the database parameter
represents a complete connection string in the format that is shown in
Example 5-42.

Example 5-42 Connection string for an uncataloged DB2 database

DRIVER={IBM DB2 ODBC DRIVER};DATABASE=database;HOSTNAME=hostname;
PORT=port;PROTOCOL=TCPIP;UID=username;PWD=password

Example 5-43 shows the relevant code.

Example 5-43 Connection string for uncataloged database used in the example

$database = 'sample';
$user = 'db2inst1';
$password = 'db2inst1';
$hostname = 'localhost';
$port = 50000;

$conn_string = "DRIVER={IBM DB2 ODBC DRIVER};DATABASE=$database;
HOSTNAME=$hostname;PORT=$port;PROTOCOL=TCPIP;UID=$user;PWD=$password;";

$conn = db2_connect($conn_string, ‘’, ‘’);

The oci_bind_by_name and db2_bind_param functions
The oci_bind_by_name function takes the following required and optional (shown
in []) parameters:

(resource $statement, string $ph_name, mixed &$variable [, int
$maxlength [, int $type]])

Replace the oci_bind_by_name function with the db2_bind_param function, which
accepts the following required and optional [] parameters:

(resource stmt, int parameter-number, string variable-name, [int
parameter-type, [int data-type, [int precision, [int scale]]]])

Additional information: For detailed information about cataloging a DB2
database, see Database Administration Concepts and Configuration
Reference, SC27-3871.
 Chapter 5. Application conversion 293

The parameters are as follows:

stmt A prepared statement that is returned from
db2_prepare().

parameter-number Specifies the 1-indexed position of the parameter in the
prepared statement.

variable-name A string that specifies the name of the PHP variable to
bind to the parameter specified by parameter-number.

parameter-type A constant specifying whether the PHP variable should be
bound to the SQL parameter as an input parameter
(DB2_PARAM_IN), an output parameter (DB2_PARAM_OUT), or
as a parameter that accepts input and returns output
(DB2_PARAM_INOUT). This parameter is optional.

data-type A constant specifying the SQL data type that the PHP
variable should be bound as, whether one of DB2_BINARY,
DB2_CHAR, DB2_DOUBLE, or DB2_LONG. This parameter
is optional.

precision Specifies the precision with which the variable should be
bound to the database. This parameter is optional.

scale Specifies the scale with which the variable should be
bound to the database. This parameter is optional.

With this information, you bind the stored procedure input and the output
parameters are converted, as shown in Example 5-44.

Example 5-44 Converting oci_bind_by_name to db2_bind_param

ORACLE:
// Bind the input parameter
oci_bind_by_name($stmt,':name',$name,32);

// Bind the output parameter
oci_bind_by_name($stmt,':message',$message,100);

DB2 conversion:
// Bind the input parameter
db2_bind_param($stmt, 1, "name", DB2_PARAM_IN);

// Bind the output parameter
db2_bind_param($stmt, 2, "message", DB2_PARAM_OUT);
294 Oracle to DB2 Conversion Guide: Compatibility Made Easy

The oci_parse and db2_prepare functions
The oci_parse function prepares a query. The function accepts the
following parameters:

(resource $connection, string $query)

The oci_parse function is converted to the db2_prepare function, which accepts
the following required and optional (shown in []) parameters:

(resource connection, string statement, [array options])

The parameters are defined as follows:

connection A valid database connection resource variable as
returned from db2_connect() or db2_pconnect().

statement An SQL statement, optionally containing one or more
parameter markers.

options (Optional) An associative array that contains statement
options. You can use this parameter to request a
scrollable cursor on database management systems that
support this functionality.

Using this information, the calling of a DB2 stored procedure is converted, as
shown in Example 5-45.

Example 5-45 Converting oci_parse to db2_prepare

Oracle:

$sql = 'BEGIN Greeting(:name, :message); END;';
$stmt = oci_parse($conn,$sql);

DB2 conversion:

$sql = 'CALL Greeting(?, ?)';
$stmt = db2_prepare($conn, $sql);
 Chapter 5. Application conversion 295

After these changes are implemented, the application is fully converted to DB2.
Figure 5-6 shows the result of running this program.

Figure 5-6 The result of running db2Greeting.php

5.10 Converting .NET applications

The supported operating systems for developing and deploying .NET Framework
1.1 applications are:

� Windows 2000
� Windows XP (32-bit edition)
� Windows Server 2003 (32-bit edition)

DB2 10.5 does not support the .NET Framework 1.1. The supported operating
systems for developing and deploying .NET Framework 2.0, 3.0, 3.5, and 4.0
applications are:

� Windows XP, Service Pack 2 (32-bit and 64-bit editions)
� Windows Server 2003 (32-bit and 64-bit editions)
� Windows Vista (32-bit and 64-bit editions)
� Windows Server 2008 (32-bit and 64-bit editions)
� Windows Server 2008 R2 (64-bit edition)
� Windows 7 (32–bit and 64–bit editions)

5.10.1 Supported development software for .NET Framework
applications (DB2 9.7)

In addition to a DB2 client, you need one of the following options to develop .NET
Framework applications:

� Visual Studio 2003 (for .NET Framework 1.1 applications)
� Visual Studio 2005 (for .NET Framework 2.0 applications)

Note: For complete information about PHP, see Developing Perl, PHP, Python,
and Ruby on Rails Applications, SC27-3876.
296 Oracle to DB2 Conversion Guide: Compatibility Made Easy

5.10.2 Supported development software for .NET Framework
applications (DB2 10.5)

The following Visual Studio versions are supported:

� Visual Studio 2008
� Visual Studio 2010

5.10.3 Supported deployment software for .NET Framework
applications (in general)

The following .NET Framework versions are supported:

� .NET Framework 1.1 Redistributable Package (DB2 9.7 only)
� .NET Framework 2.0 Redistributable Package
� .NET Framework 3.0 Redistributable Package
� .NET Framework 3.5 Redistributable Package
� .NET Framework 4.0 Redistributable Package

5.10.4 .NET Data Providers

DB2 for Linux, AIX, and Windows includes the following .NET Data Providers:

� DB2 .NET Data Provider

A high performance, managed ADO.NET Data Provider. This provider is the
recommended .NET Data Provider for access to DB2 family databases.
ADO.NET database access using the DB2 .NET Data Provider has fewer
restrictions, and provides better performance than the OLE DB and ODBC
.NET bridge providers. This provider provides support for .NET 2.0, .NET3.0,
and .NET 3.5 Framework.

� OLE DB .NET Data Provider

A bridge provider that feeds ADO.NET requests to the IBM OLE DB provider
(by way of the COM interop module). This .NET Data Provider is not
recommended for access to DB2 family databases. The DB2 .NET Data
Provider is faster and more feature rich.

� ODBC .NET Data Provider

A bridge provider that feeds ADO.NET requests to the IBM ODBC driver. This
.NET Data Provider is not recommended for access to DB2 family databases.
The DB2 .NET Data Provider is faster and more feature rich.
 Chapter 5. Application conversion 297

In addition to the DB2 .NET Data Provider, IBM also provides a collection of
add-ins to the Microsoft Visual Studio .NET IDE, providing tight integration
between IBM Data Studio and DB2 for Linux, UNIX, and Windows and the host
databases using IBM DB2 Connect™. The add-ins simplify the creation of DB2
applications that use the ADO.NET interface. The add-ins can also be used to
develop server-side objects, such as SQL stored procedures and user-defined
functions. The DB2 Visual Studio add-ins can be obtained at the
following website:

http://www-306.ibm.com/software/data/db2/windows/dotnet.html

The IBM.Data.DB2 name space contains the DB2 .NET Data Provider. To use
the DB2 .NET Data Provider, you must add the Imports or using statement for
the IBM.Data.DB2 name space to your application .DLL, as shown in
Example 5-46.

Example 5-46 Examples of the required Imports or using statement

[Visual Basic]
Imports IBM.Data.DB2

[C#]
using IBM.Data.DB2;

Also, you need to add references to IBM.Data.db2.dll and
IBM.Data.DB2.Server.dll to the project.

5.10.5 Visual Basic .NET conversion example

In general, converting a .NET application from Oracle to DB2 is simple. In most
cases, converting means replacing the classes that are available in the Oracle
.NET Data Provider with functionally equivalent classes that are available in the
DB2 .NET Data Provider, for example, replacing OracleConnection with
DB2Connection or OracleCommand with DB2Command.

The example in this section demonstrates this approach using a simple Visual
Basic .NET application that connects to a database, runs a SELECT statement,
and returns a result set. The DB2 example outlines the changes that are
necessary for converting from Oracle to DB2.

Components of the GUI for the conversion example
The GUI used for both examples consists of several controls:

� A RUN QUERY button

Clicking this button connects to the database and runs the query.
298 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www-306.ibm.com/software/data/db2/windows/dotnet.html

� A Query Results text box (for aesthetic purposes only)

� A list box

When the query runs, the results display in this list box.

� A Quit button

Clicking this button ends the application.

Figure 5-7 shows the GUI used to demonstrate the Visual Basic .NET application
conversion example.

Figure 5-7 GUI for the Visual Basic .NET application conversion example

The essential components of this application are contained within the Click event
for the RUN QUERY control button. Example 5-47 shows the code in the
Button1_Click event as it might appear in an Oracle application. Some
explanations of the changes are documented in the notes that appear after the
code example.

Example 5-47 The Button1_Click event

Imports Oracle.DataAccess.Client ' ODP.NET Oracle managed provider [1]

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Chapter 5. Application conversion 299

Dim oradb As String = "Data Source=(DESCRIPTION=(ADDRESS_LIST=" _ +
"(ADDRESS=(PROTOCOL=TCP)(HOST=9.10.11.12)(PORT=1521)))" _ +
"(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=ora10g)));" _ + "User
Id=ora_usr;Password=ora_usr;" [2]

Dim conn As New OracleConnection(oradb) [3]
conn.Open()

Dim cmd As New OracleCommand [4]
cmd.Connection = conn
cmd.CommandText = "select first_name, last_name from employees

where dept_code = 'IT'"

cmd.CommandType = CommandType.Text

Dim dr As OracleDataReader = cmd.ExecuteReader() [5]

 While dr.Read()
 ListBox1.Items.Add("The name of this employee is: " +
dr.Item("first_name") + dr.Item("last_name")) [6]
 End While

 conn.Dispose()

 End Sub

Notes about the Button1_Click event:

� IMPORT Oracle.DataAccess.Client is added to the application .DLL.

� A string (OraDb) is declared as the connection string for the
Oracle database.

� A connection (conn) is defined as an OracleConnection.

� A command (cmd) is defined as an OracleCommand and populated with the
text of the query.

� A DataReader (dr) is defined as an OracleDataReader and the query
is run.

� The List Box is populated with the results of the query.
300 Oracle to DB2 Conversion Guide: Compatibility Made Easy

When the application runs, clicking RUN QUERY yields the results that are
shown in Figure 5-8.

Figure 5-8 The results of the Oracle Example are displayed in the list box

Converting the DB2 Example application
Figure 5-7 on page 299 shows the GUI for the DB2 Example conversion.

Because the essential components of this application are contained within the
Click event for the RUN QUERY control button, the focus of the conversion
centers on this control. Example 5-48 shows the code in the Button1_Click event
as it appears after conversion to DB2. The numbers that show to the right of the
code example lines correspond to the numbers in the explanatory note that
follows the example.

Example 5-48 The code in the Button1_Click event after conversion

Imports IBM.Data.DB2 [1]
__

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 Chapter 5. Application conversion 301

Dim db2db As String = [2]
"Server=localhost:50000;Database=testdb;UID=db2inst1;PWD=db2inst1"

Dim conn As New DB2Connection(db2db) [3]

conn.Open()

Dim cmd As New DB2Command [4]
cmd.Connection = conn

cmd.CommandText = "select first_name, last_name from employees where
dept_code = 'IT'"

cmd.CommandType = CommandType.Text

Dim dr As DB2DataReader = cmd.ExecuteReader() [5]
 While dr.Read()

ListBox1.Items.Add("The name of this employee is: " +
dr.Item("first_name") + dr.Item("last_name"))

 End While [6]

conn.Dispose()
 End Sub

Notes about the Button1_Click event (after conversion):

1. To use the DB2 .NET Data Provider, you must add the Imports (Visual
Basic) or using (C#) statement for the IBM.Data.DB2 name space to your
application .DLL.

2. A string (db2db) is declared and populated as the connection string for the
DB2 database (converted from OraDb).

3. A connection (conn) is defined as DB2Connection (converted
from OracleConnection).

4. A command (cmd) is defined as DB2Command (converted
from OracleCommand).

5. A DataReader (dr) is declared as a DB2DataReader (converted
from OracleDataReader).

6. The List Box is populated with the results of the query.
302 Oracle to DB2 Conversion Guide: Compatibility Made Easy

After you implement the changes, click RUN QUERY to produce the results that
are shown in Figure 5-9.

Figure 5-9 The results of running the DB2 Example application

For further information: You can find more information about the DB2 .NET
provider at:

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.swg.im.
dbclient.adonet.doc/doc/c0010960.html

For in-depth information about .NET programming, see Developing ADO.NET
and OLE DB Applications, SC27-3873.
 Chapter 5. Application conversion 303

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.swg.im.dbclient.adonet.doc/doc/c0010960.html

304 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Appendix A. Terminology mapping

All relational database systems, including Oracle Database and DB2, are based
upon similar concepts. At the same time, each database platform operates with a
set of terms that might be different. These differences in terminology can present
difficulties when you are converting from one platform to another.

Table A-1 introduces the most common Oracle database terms and provides the
DB2 equivalent of the term.

Table A-1 Mapping of Oracle database terminology to DB2

A

Oracle term DB2 term Comments

Alert log Diagnostic log A file where instance- and database-level error messages and
warnings are recorded.

Data blocks Pages The smallest storage entities in the storage model.

Data cache Buffer pools Memory areas that cache table and index pages when they are
read from disk. A DB2 database must have at least one buffer
pool, and each table space can be assigned a separate buffer
pool.

Data dictionary System catalog A collection of tables and views that store the database
metadata.
© Copyright IBM Corp. 2009, 2013. All rights reserved. 305

Data files Containers Physical structures on a disk that hold the table space contents.
The automatic storage feature in DB2 is responsible for the
container management (allocation, resizing, collation of empty
space, and so on.)

Database Database A collection of objects that represents data and routines (stored
procedures, functions, and so on).

Database link
(DBlink)

Federated server In an Oracle database, this object describes a connection from
one database to another. In DB2, a federated server definition
is used for this purpose. Depending on the DB2 edition, you
might need to install IBM InfoSphere Federation Server to be
able to create servers and other federated objects.

Extents Extents Physical space allocation units within table spaces.

Instance Instance Includes processes and shared memory. In DB2, it also
includes a permanent directory structure. An instance is
usually created at installation time and must exist before a
database can be created.
A DB2 instance is also known as the database manager (DBM).
A DB2 instance can support multiple databases. An Oracle
database instance can support only one database.

Large pool Utility heap Memory area that is used by database utilities, such as backup
and restore.

Oracle EE DB2 Enterprise
Server Edition

Enterprise-level database server product.

Oracle
Transparent
Gateway

DB2 Connect
InfoSphere
Federation
Server

Access to DB2 databases on IBM i and System z platforms and
as heterogeneous data sources.

 Package Module A database object that logically groups PL/SQL (SQL PL)
program objects (routines), such as stored procedures and
functions.

 N/A Package A precompiled access plan for an embedded static SQL
application that is stored in the server.

pfile and spfile DBM and
database
configuration

Configuration settings for the instance and the database.

Oracle term DB2 term Comments
306 Oracle to DB2 Conversion Guide: Compatibility Made Easy

PL/SQL SQL Procedural
Language (SQL
PL)

Programming language extension to SQL. DB2 stored
procedures can be programmed in SQL PL (a subset of the
PSM standard), Java, C, C++, COBOL, Fortran, OLE, and
REXX. DB2 functions can be programmed in Java, C, C++,
OLE, or SQL PL.

Process Global
Area (PGA)

Agent /
application
shared
memory

Shared memory area to store user-specific data that is passed
between an application process and the database server.

Redo logs Database logs Files that store information required for the database recovery
in case of failure.

Statement cache Package cache A memory area that caches prepared dynamic SQL
statements.

SQL*PLUS CLPPlus The command-line interface to the database server.

System Global
Area (SGA)

Instance and
database shared
memory

Shared memory area or areas for the database server. In
Oracle, there is one shared memory area. In DB2, there is one
shared memory area at the database manager (instance) level
and one for each active database.

Table spaces Table spaces Logical structures that contain database tables and other
objects.

Undo table
spaces

N/A Store the before image of data when they are being modified.
In DB2, the before image of data are stored in the database log
along with the after image.

Oracle term DB2 term Comments
 Appendix A. Terminology mapping 307

308 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Appendix B. Data types

This appendix explains data types in the following environments:

� Supported SQL data types in C/C++
� Supported SQL data types in Java
� Data types available in PL/SQL
� Mapping Oracle data types to DB2 data types

B

© Copyright IBM Corp. 2009, 2013. All rights reserved. 309

B.1 Supported SQL data types in C/C++

Table B-1 provides a complete list of SQL data types, C and C/C++ data type
mapping, and a brief description of each type.

For more information about mapping between SQL data types and C and C++
data types, see the following resources:

� Developing Embedded SQL Applications, SC27-2445

� DB2 Information Center:

– Supported SQL data types in C and C++ embedded SQL applications,
found at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.i
bm.db2.luw.apdv.embed.doc/doc/r0006090.html

– Data types for procedures, functions, and methods in C and C++
embedded SQL applications, found at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.i
bm.db2.luw.apdv.embed.doc/doc/r0006094.html

Table B-1 Oracle to DB2 data type mapping

Item SQL data type
sqltype

C/C++ type sqllen Description

Integer SMALLINT
(500 or 501)

short
short int
sqlint 16

2 � 16-bit signed integer.
� Range of -32,768 to 32,767).
� Precision of 5 digits.

INTEGER
INT
(496 or 497)

long
long int
sqlint32

4 � 32-bit signed integer.
� Range of -2,147,483,648 to

2,147,483,647).
� Precision of 10 digits.

BIGINT
(492 or 493)

long long
long
__int64
sqlint64

8 64-bit signed integer.
310 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.embed.doc/doc/r0006090.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.embed.doc/doc/r0006094.html

Floating
point

REAL
FLOAT
(480 or 481)

float � Single precision floating point.
� 32-bit approximation of a real number.
� FLOAT(n) can be a synonym for REAL

if 0 < n < 25.

DOUBLE
(480 or 481)
DOUBLE
PRECISION

double 8 � Double precision floating point.
� 64-bit approximation of a real number.
� Ranges of 0, -1.79769E+308 to

-2.225E-307, and 2.225E-307 to
1.79769E+308).

� FLOAT(n) can be a synonym for
DOUBLE if 24 < n < 54.

Decimal DECIMAL(p,s)
DEC(p,s)
(484 or 485)

NUMERIC(p,s)
NUM(p,s)

double /
decimal

p/2+1 � Packed decimal.
� If precision /scale is not specified, the

default is (5.0).
� The max precision is 31 digits, and the

max range is between -10E31+1 to
10E31 -1.

� Consider using char / decimal functions
to manipulate packed decimal fields as
char data.

Date and
time

DATE
(384 or 385)

struct {
short len;
char data[10];

} dt;

char dt[11];

10 � Null-terminated character form (11
characters) or varchar struct form (10
characters).

� struct can be divided as wanted to obtain
the individual fields.

� Example: 11/02/2000.
� Stored internally as a packed string of 4

bytes.

TIME
(388 or 389)

char 8 � Null-terminated character form (9
characters) or varchar struct form (8
characters).

� struct can be divided as wanted to obtain
the individual fields.

� Example: 19:21:39.
� Stored internally as a packed string of 3

bytes.

TIMESTAMP
(392 or 393)

char 26 � Null-terminated character form or
varchar struct form.

� Allows 19 - 32 characters.
� struct can be divided as wanted to obtain

the individual fields.
� Example: 2003-08-04-01.02.03.000000
� Stored internally as a packed string of 10

bytes.

Item SQL data type
sqltype

C/C++ type sqllen Description
 Appendix B. Data types 311

character CHAR(1)
(452 or 453)

char 1 Single character.

CHAR(n)
(452 or 453)

char n � Fixed-length character string that
consists of n bytes.

� Use char[n+1] where 1 <= n <= 254.
� If the length is not specified, it defaults to

1.

VARCHAR
(460 or 461)

char n � Null-terminated variable length character
string.

� Use char[n+1] where 1 <= n <=32672.

VARCHAR
(448 or 449)
or
VARCHAR2
(448 or 449)

struct tag { short
int; char[n] }

len � Non-null-terminated varying character
string with 2-byte string length indicator.

� Use char[n] in struct form
where 1<= n <= 32672.

� Default SQL type.

LONG
VARCHAR
(456 or 457)

struct tag { short
int; char[n] }

len � Non-null-terminated varying character
string with 2-byte string length indicator.

� se char[n] in struct form where 32673<=
n <= 32700.

CLOB(n)
(408 or 409)

clob n � Non-null-terminated varying character
string with 4-byte string length indicator.

� Use char[n] in struct form
where 1 <= n <= 2147483647.

CLOB
(964 or 965)

clob_locator Identifies CLOB entities on the server.

CLOB
(920 or 921)

clob_file Descriptor for the file that contains the CLOB
data.

Binary BLOB(n)
(404 or 405)

blob n � Non-null-terminated varying binary string
with 4-byte string length indicator.

� Use char[n] in struct form
where 1 <= n <= 2147483647.

BLOB
(960 or 961)

blob_locator Identifies BLOB entities on the se.rver.

BLOB
(916 or 917)

blob_file Descriptor for the file that contains the BLOB
data.

Item SQL data type
sqltype

C/C++ type sqllen Description
312 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Double-
byte

GRAPHIC(1)
GRAPHIC(n)
(468 or 469)

sqldbchar 24 � sqldbchar is a single double-byte
character string.

� For a fixed-length graphic string of length
integer, which can range from 1 to 127. If
the length specification is omitted, a
length of 1 is assumed,

� Precompiled with the WCHARTYPE
NOCONVERT option.

VARGRAPHIC(n
)
(464 or 465)

struct {
short int;
sqldbchar[n]

} tag;

alternately:
sqldbchar[n+1]

n*2+4 � For a varying-length graphic string of
maximum length integer, which can
range 1 - 16336.

� Precompiled with the WCHARTYPE
NOCONVERT option.

� Null terminated variable-length.

LONG
VARGRAPHIC(n
)
(472 or 473)

struct {
short int;
sqldbchar[n]

} tag;

� For a varying-length graphic string with a
maximum length of 16350 and a 2-byte
string length indicator 16337<=n
<=16350.

� Precompiled with the WCHARTYPE
NOCONVERT option.

DBCLOB(n)
(412 or 413)

dbclob � For non-null-terminated varying
double-byte character large object
maximum length in double-byte
characters.

� 4-byte string length indicator.
� Use dbclob(n) where 1<=n <=

1073741823 double-byte characters.
� Precompiled with the WCHARTYPE

NOCONVERT option.

DBCLOB dbclob_locator � Identifies DBCLOB entities on the
server.

� Precompiled with the WCHARTYPE
NOCONVERT option.

DBCLOB dbclob_file � Descriptor for a file that contains the
DBCLOB data.

� Precompiled with the WCHARTYPE
NOCONVERT option.

External
data

Datalink(n) n+54 The length of a DATALINK column is 200
bytes.

XML
(988 or 989)

struct { sqluint32
length;
char data[n]; }

� XML value.
� 1<=n<=2 147 483 647.

Item SQL data type
sqltype

C/C++ type sqllen Description
 Appendix B. Data types 313

B.2 Supported SQL data types in Java

Table B-2 shows the Java equivalent of each SQL data type, based on the JDBC
specification for data type mappings. The JDBC driver converts the data that is
exchanged between the application and the database by using the following
mapping schema. Use these mappings in your Java applications and your
PARAMETER STYLE JAVA procedures and UDFs.

For more information about mapping between SQL data types and Java data
types, see Developing Embedded SQL Applications, SC27-2445 or the DB2
Information Center, found at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.apdv.routines.doc/doc/r0006275.html

Table B-2 SQL data types mapped to Java declarations

Item SQL data type
sqltype

Java type sqllen Description

Integer SMALLINT
(500 or 501)

short 2 16-bit, signed integer

INTEGER
(496 or 497)

int 4 32-bit, signed integer

BIGINT 1

(492 or 493)
long 8 64-bit, signed integer

Floating
point

REAL
(480 or 481)

float Single precision floating point

DOUBLE
(480 or 481)

double 4 Single precision floating point

DOUBLE
(480 or 481)

double 8 Double precision floating point

Decimal DECIMAL(p,s)
(484 or 485)

java.math. BigDecimal n/2 Packed decimal

DECFLOAT(n) java.math. BigDecimal n=16 or n=34

Date and
time

DATE
(384 or 385)

java.sql.Date 10 10-byte character string

TIME
(388 or 389)

java.sql.Time 8 8-byte character string

TIMESTAMP
(392 or 393)

java.sql.Timestamp 26 26-byte character string

TIMESTAMP(n) java.sql.Timestamp 26 0<=p<=12, default 6
314 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.routines.doc/doc/r0006275.html

Character CHAR(n)
(452 or 453)

java.lang.String n Fixed-length character string
of length n, where n is from 1 to
254

CHAR (n) FOR
BIT DATA

byte[] Fixed-length character string
of length n, where n is from 1 to
254

VARCHAR (n)
(448 or 449)

java.lang.String n Variable-length character
string, n <= 32672

VARCHAR (n)
FOR BIT DATA

byte[] Variable-length character
string n <= 32672

LONG VARCHAR
(456 or 457)

java.lang.String n Long variable-length character
string, n <= 32672

CLOB(n)
(408 or 409)

java.lang.Clob,
java.lang.String,
java.io.ByteArrayInputStream,
java.io.StringReader

n Large object variable-length
character string

Binary BLOB(n)
(404 or 405)

java.lang.Blob,
byte[]

n Large object variable-length
binary string

BINARY(n) byte[] n<=254

VARBINARY(n) byte[] n<=32672

Double-
byte

GRAPHIC(n)
(468 or 469)

java.lang.String n Fixed-length double-byte
character string, n<=127

VARGRAPHIC(n)
(464 or 465)

java.lang.String n*2+4 Non-null-terminated varying
double-byte character string
with 2-byte string length
indicator, n<=16336

LONG
VARGRAPHIC(n)
(472 or 473)

java.lang.String n Non-null-terminated varying
double-byte character string
with 2-byte string length
indicator

DBCLOB(n)
(412 or 413)

java.lang.Clob n Large object variable-length
double-byte character string

CLOB(n)
(408 or 409)

java.sql.Clob,
java.lang.String

n Non-null-terminated varying
character string with 4-byte
string length indicator

Item SQL data type
sqltype

Java type sqllen Description
 Appendix B. Data types 315

B.3 Data types available in PL/SQL

The DB2 data server supports a wide range of data types that can be used to
declare constants and variables in a PL/SQL block. Table B-3 presents the
supported scalar data types that are available in PL/SQL.

Table B-3 Supported scalar data types that are available in PL/SQL

binary BLOB(n)
(404 or 405)

java.sql.Blob,
byte[],

n Non-null-terminated varying
binary string with 4-byte string
length indicator

ROWID java.sql.RowId,
byte[],
com.ibm.db2.jcc.DB2RowIDa

RowId identifier

XML java.lang.String,
com.ibm.db2.jcc.DB2Xmla,
java.sql.SQLXML,
java.io.InputStream,
java.sql.Clob,
java.sql.Blob,
byte[]

XML value

a. Deprecated

Item SQL data type
sqltype

Java type sqllen Description

PL/SQL data type DB2 SQL data type Description

BINARY_INTEGER INTEGER Integer numeric data

BLOB BLOB(4096) Binary data

BLOB (n) BLOB (n)
n = 1 - 2 147 483 647

Binary large object data

BOOLEAN BOOLEAN Logical Boolean (true or false)

CHAR CHAR (1) Fixed-length character string data of length 1

CHAR (n) CHAR (n)
n = 1 - 254

Fixed-length character string data of length n

CHAR VARYING (n) VARCHAR (n) Variable-length character string data of maximum
length n

CHARACTER CHARACTER (1) Fixed-length character string data of length 1

CHARACTER (n) CHARACTER (n)
n = 1 - 254

Fixed-length character string data of length n

CHARACTER VARYING
(n)

VARCHAR (n)
n = 1 - 32 672

Variable-length character string data of maximum
length n
316 Oracle to DB2 Conversion Guide: Compatibility Made Easy

CLOB CLOB (1 MB) Character large object data

CLOB (n) CLOB (n)
n = 1 - 2 147 483 647

Fixed-length long character string data of length n

DATE DATE a Date and time data (expressed to the second)

DEC DEC (9, 2) Decimal numeric data

DEC (p) DEC (p)
p = 1 - 31

Decimal numeric data of precision p

DEC (p, s) DEC (p, s)
p = 1 - 31; s = 1 - 31

Decimal numeric data of precision p and scale s

DECIMAL DECIMAL (9, 2) Decimal numeric data

DECIMAL (p) DECIMAL (p)
p = 1 - 31

Decimal numeric data of precision p

DECIMAL (p, s) DECIMAL (p, s)
p = 1 - 31; s = 1 - 31

Decimal numeric data of precision p and scale s

DOUBLE DOUBLE Double precision floating-point number

DOUBLE PRECISION DOUBLE
PRECISION

Double precision floating-point number

FLOAT FLOAT Float numeric data

FLOAT (n)
n = 1 - 24

REAL Real numeric data

FLOAT (n)
n = 25 - 53

DOUBLE Double numeric data

INT INT Signed 4-byte integer numeric data

INTEGER INTEGER Signed 4-byte integer numeric data

LONG CLOB (32760) Character large object data

LONG RAW BLOB (32760) Binary large object data

LONG VARCHAR CLOB (32760) Character large object data

NATURAL INTEGER Signed 4-byte integer numeric data

NCHAR GRAPHIC (127) Fixed-length graphic string data

NCHAR (n)
n = 1 - 2000

GRAPHIC (n)
n = 1 - 127

Fixed-length graphic string data of length n

NCLOBb 2 DBCLOB (1 MB) Double-byte character large object data

NCLOB (n) DBCLOB (2000) Double-byte long character string data of maximum
length n

NVARCHAR2 VARGRAPHIC (2048)
or
NVARCHAR2(2048)

Variable-length graphic string data or national string
that is coerced back to VARGRAPHIC

PL/SQL data type DB2 SQL data type Description
 Appendix B. Data types 317

NVARCHAR2 (n) VARGRAPHIC (n)
NVARCHAR2(n)

Variable-length graphic string data of maximum
length n, or national string that is coerced back to
VARGRAPHIC

NUMBER NUMBERc Exact numeric data

NUMBER (p) NUMBER (p)c Exact numeric data of maximum precision p

NUMBER (p, s) NUMBER (p, s)c

p = 1 - 31
Exact numeric data of maximum precision p and scale
s

NUMERIC NUMERIC (9.2) Exact numeric data

NUMERIC (p) NUMERIC (p)
p = 1 - 31

Exact numeric data of maximum precision p

NUMERIC (p, s) NUMERIC (p, s)
p = 1 - 31; s = 0 - 31

Exact numeric data of maximum precision p and scale
s

PLS_INTEGER INTEGER Integer numeric data

RAW BLOB (32767) Binary large object data

RAW (n) BLOB (n)
n = 1 - 32 767

Binary large object data

SMALLINT SMALLINT Signed 2-byte integer data

TIMESTAMP (0) TIMESTAMP (0) Date data with time stamp information

TIMESTAMP (p) TIMESTAMP (p) Date and time data with optional fractional seconds
and precision p

VARCHAR VARCHAR (4096) Variable-length character string data with a maximum
length of 4096 characters

VARCHAR (n) VARCHAR (n) Variable-length character string data with a maximum
length of n characters

VARCHAR2 (n) VARCHAR2 (n)d Variable-length character string data with a maximum
length of n characters

a. When the DB2_COMPATIBILITY_VECTOR registry variable is set for the DATE data type, DATE is equivalent to
TIMESTAMP (0).

b. For restrictions for the NCLOB data type in certain database environments, see “Restrictions on PL/SQL
support” in the DB2 Information Center.

c. This data type is supported when the number_compat database configuration parameter is set to ON.
d. This data type is supported when the varchar2_compat database configuration parameter is set to ON.

PL/SQL data type DB2 SQL data type Description
318 Oracle to DB2 Conversion Guide: Compatibility Made Easy

B.4 Mapping Oracle data types to DB2 data types

Table B-4 summarizes the mapping from Oracle data types to the corresponding
DB2 data types. In some cases, the mapping is one to many and depends on the
actual usage of the data.

Table B-4 Mapping Oracle data types to DB2 data types

Oracle data type DB2 data type Notes

CHAR(n) CHAR(n) 1 <= n <= 254.

VARCHAR2(n) VARCHAR2(n) n <= 32762.

NCHAR(n) CHAR(n) a

a. You can map Oracle NCHAR and NVARCHAR2 columns to DB2 CHAR and VARCHAR2 columns that are
created in a Unicode database or a column that is created with a CCSID clause to a Unicode compatible code
set.

1 <= n <= 254.

NVARCHAR2(n) NVARCHAR2(n) a n <= 32762.

LONG LONG VARCHAR(n) if n <= 32700 bytes.

LONG CLOB(2 GB) if n <= 2 GB.

NUMBER(p) NUMBER(p)

NUMBER(p,s) NUMBER(p,s) if s > 0.

NUMBER NUMBER

RAW(n) CHAR(n) FOR BIT DATA,
VARCHAR(n) FOR BIT DATA,
BLOB(n)

� CHAR, if n <= 254.
� VARCHAR, if 254 < n <= 32672.
� BLOB, if 32672 < n <= 2 GB.

LONG RAW LONG VARCHAR(n) FOR BIT DATA
BLOB(n)

� LONG, if n <= 32700.
� BLOB, if 32700 < n <= 2 GB.

BLOB BLOB(n) If n <= 2 GB.

CLOB CLOB(n) If n <= 2 GB.

NCLOB DBCLOB(n) If n <= 2 GB, use DBCLOB(n/2).

DATE DATE The Oracle default format is
DD-MON-YY.

DATE (only the date) DATE (MM/DD/YYYY) Use the Oracle TO_CHAR() function to
extract data for a subsequent DB2 load.

DATE (only the time) TIME (HH24:MI:SS) Use the Oracle TO_CHAR() function to
extract for a subsequent DB2 load.

TIMESTAMP (0) TIMESTAMP (0) Date data with time stamp information.

TIMESTAMP (p) TIMESTAMP (p) Date and time data with optional
fractional seconds and precision p.

XMLType XML XML storage.
 Appendix B. Data types 319

320 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Appendix C. Built-in modules

This appendix provides details for the following built-in modules, equivalent to
Oracle Database supplied PL/SQL packages, that are supported in DB2 10:

� DBMS_ALERT
� DBMS_DDL
� DBMS_JOB
� DBMS_LOB
� DBMS_OUTPUT
� DBMS_PIPE
� DBMS_SQL
� DBMS_UTILITY
� UTL_DIR
� UTL_MAIL
� UTL_SMTP

C

© Copyright IBM Corp. 2009, 2013. All rights reserved. 321

C.1 DBMS_ALERT

The DBMS_ALERT module provides a set of procedures for registering, sending,
and receiving alerts for a specific event. Alerts are stored in
SYSTOOLS.DBMS_ALERT_INFO, which is created in the SYSTOOLSPACE when you first
reference this module for a particular database. The DBMS_ALERT module
requires that the database configuration parameter CUR_COMMIT to be set to ON.

Table C-1 lists the system-defined routines included in the DBMS_ALERT
module.

Table C-1 System-defined routines available in the DBMS_ALERT module

Example C-1 shows the use of DBMS_ALERT routines. Assume the
“AlertFromTrigger” alert is signaled as a result of an insert, which fires a trigger
named TRIG1.

Example: C-1 Signaling from a trigger

CREATE OR REPLACE TRIGGER TRIG1
AFTER INSERT ON T1alert
FOR EACH ROW
BEGIN

DBMS_ALERT.SIGNAL('alertfromtrigger', :NEW.C1);
END;
/

Routine name Description

REGISTER procedure Registers the current session to receive a specified
alert.

REMOVE procedure Removes registration for a specified alert.

REMOVEALL procedure Removes registration for all alerts.

SIGNAL procedure Signals the occurrence of a specified alert.

SET_DEFAULTS procedure Sets the polling interval for the WAITONE and
WAITANY procedures.

WAITANY procedure Waits for any registered alert to occur.

WAITONE procedure Waits for a specified alert to occur.
322 Oracle to DB2 Conversion Guide: Compatibility Made Easy

You can catch the alert through the WAITONE routine after you register the alert
name with a 60-second timeout, as shown in Example C-2.

Example: C-2 Intercepting the alert

DECLARE
v_stat1 INTEGER;
v_msg1 VARCHAR2(50);
BEGIN

DBMS_ALERT.REGISTER('alertfromtrigger');
DBMS_ALERT.WAITONE('alertfromtrigger', v_msg1, v_stat1, 60);

END;
/

For more information and examples about DBMS_ALERT, visit the DB2
Information Center:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.apdv.sqlpl.doc/doc/r0053671.html

C.2 DBMS_DDL

The DBMS_DDL module implements the routines that are listed in Table C-2 for
obfuscating (“wrapping” in Oracle terms) DDL statements and the database
objects that are created by such statements. You can use this function to deploy
database objects without displaying the procedural logic in them.

Table C-2 System-defined routines available in the DBMS_DDL module

Example C-3 shows the use of DBMS_DDL.WRAP for generating the obfuscated
version of a user-defined function.

Example: C-3 Generating an obfuscated user-defined function.

VALUES(DBMS_DDL.WRAP('CREATE OR REPLACE TRIGGER ' ||
 'trg1 BEFORE INSERT ON emp ' ||
 'REFERENCING NEW AS n ' ||
 'FOR EACH ROW ' ||

Routine name Description

WRAP function Produces an obfuscated version of the DDL
statement that is provided as an argument.

CREATE_WRAPPED procedure Deploys a DDL statement in the database in an
obfuscated format.
 Appendix C. Built-in modules 323

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.sqlpl.doc/doc/r0053671.html

 'WHEN (n.bonus IS NULL) ' ||
 'SET n.bonus = n.salary * .04'))
/
CREATE OR REPLACE TRIGGER trg1 WRAPPED SQL10010
ablGWmdiWmtiTmdqTmtGTmtmUnteUmdCUnZa3mti5idaWmdaWmdaXmdyWncaGicaGUJO7oU
H:g3mwlXdtHb6:oPhVssP6gnLJPu4wN_yhwnGKJSFJcz8PHP79VYw79mMzxNtL:beJXAUZr
CwSnLFxNwtMI7LFStkj8J9IInSFmC2FR:hh_4e:zskecrzu9o6zsS5WhgRKudjOkbKT

For more information about this module, see the Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.apdv.sqlpl.doc/doc/r0057137.html

C.3 DBMS_JOB

This module provides a set of procedures for creating, scheduling, and managing
jobs. DBMS_JOB is an alternative interface for the DB2 Administrative Task
Scheduler (ATS). To use the DBMS_JOB module, you must activate the ATS.
This facility is turned off by default, although you are still able to define and
modify jobs (tasks). You can enable the ATS by setting the registry variable as
follows:

db2set DB2_ATS_ENABLE=YES

For more information, see the “Setting up the administrative task scheduler” topic
in the Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.admin.gui.doc/doc/t0054396.html

Table C-3 shows the routines in the DBMS_JOB module.

Table C-3 Procedures that are provided by the DBMS_JOB module

Routine name Description

BROKEN procedure Specifies that a job is either broken or not
broken.

CHANGE procedure Changes the parameters of the job.

INTERVAL procedure Sets the execution frequency through a date
function that is recalculated each time the job
runs. This value becomes the next date and
time for execution.
324 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.gui.doc/doc/t0054396.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.sqlpl.doc/doc/r0057137.html

Example C-4 shows the creation of a job that is called job_proc that first runs
immediately (at SYSDATE) and is scheduled to repeat every 24 hours.

Example: C-4 DBMS_JOB examples

CREATE OR REPLACE PROCEDURE job_proc
IS
BEGIN
 INSERT INTO jobrun VALUES ('job_proc run at ' || TO_CHAR(SYSDATE,
 'yyyy-mm-dd hh24:mi:ss'));
END;
/

DECLARE
 jobid INTEGER;
BEGIN

 DBMS_JOB.SUBMIT(jobid,'job_proc;',SYSDATE, 'SYSDATE + 1');

END;
/

For more information about the DBMS_JOB module, see the Information
Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.apdv.sqlpl.doc/doc/r0055103.html

NEXT_DATE procedure Sets the next date and time when the job is to
be run.

REMOVE procedure Deletes the job definition from the database.

RUN procedure Forces execution of a job even if it is marked
as broken.

SUBMIT procedure Creates a job and stores the job definition in
the database.

WHAT procedure Changes the stored procedure that is run by a
job.

Routine name Description
 Appendix C. Built-in modules 325

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.sqlpl.doc/doc/r0055103.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.sqlpl.doc/doc/r0055103.html

C.4 DBMS_LOB

This module offers a set of routines for operating on large objects (LOBs). These
routines are listed in Table C-4.

Table C-4 Routines in the DBMS_LOB module

Routine name Description

APPEND procedure Appends one large object to another.

CLOSE procedure Closes an open large object.

COMPARE function Compares two large objects.

CONVERTTOBLOB procedure Converts character data to binary data.

CONVERTTOCLOB procedure Converts binary data to character data.

COPY procedure Copies one large object to another.

ERASE procedure Erases a large object.

GET_STORAGE_LIMIT function Gets the storage limit for large objects.

GETLENGTH function Gets the length of the large object.

INSTR function Gets the position of the nth occurrence of
a pattern in the large object starting at
offset.

ISOPEN function Checks if the large object is open.

OPEN procedure Opens a large object.

READ procedure Reads a large object.

SUBSTR function Gets part of a large object.

TRIM procedure Trims a large object to the specified
length.

WRITE procedure Writes data to a large object.

WRITEAPPEND procedure Writes data from the buffer to the end of a
large object.
326 Oracle to DB2 Conversion Guide: Compatibility Made Easy

In Example C-5, the APPEND and ERASE routines are started from the DB2
command line processor to demonstrate some actions that can be performed on
a LOB.

Example: C-5 DBMS_LOB examples

call DBMS_LOB.APPEND_CLOB('ABCD','1234')

 Value of output parameters

 Parameter Name : DEST_LOB
 Parameter Value : ABCD1234

 Return Status = 0

call DBMS_LOB.ERASE_CLOB('DBMS', 1,3)

 Value of output parameters

 Parameter Name : LOB_LOC
 Parameter Value : DB S

 Parameter Name : AMOUNT
 Parameter Value : 1
ReturnStatus=0

Example C-6 shows the use of DBMS_LOB routines in a PL/SQL block.

Example: C-6 DBMS_LOB in an anonymous block

DECLARE
 v_dest_lob CLOB := 'ABCD';
BEGIN
 DBMS_OUTPUT.PUT_LINE('Original lob: ' || v_dest_lob);
 DBMS_LOB.APPEND_CLOB(v_dest_lob,'1234');
 DBMS_OUTPUT.PUT_LINE('New lob : ' || v_dest_lob);
 END;
/

DECLARE
 v_dest_lob CLOB := 'DBMS';
 v_amount INTEGER := 1;
BEGIN
 DBMS_OUTPUT.PUT_LINE('Original lob: ' || v_dest_lob);
 DBMS_LOB.ERASE_CLOB(v_dest_lob, v_amount, 3);
 DBMS_OUTPUT.PUT_LINE('New lob : ' || v_dest_lob);
 Appendix C. Built-in modules 327

 DBMS_OUTPUT.PUT_LINE('Amount : ' || v_amount);
END;
/

C.5 DBMS_OUTPUT

The DBMS_OUTPUT module provides a set of procedures that you can us to
work with the message buffer by putting lines of text (messages) in the message
buffer and getting messages from the buffer. These procedures can be useful
during application debugging when you must write messages to standard output.
You could use the command line processor command SET SERVEROUTPUT ON to
redirect messages to standard output.

Table C-5 lists the system-defined routines included in the DBMS_OUTPUT
module.

Table C-5 System-defined routines available in the DBMS_OUTPUT module

Example C-7 shows the use of DBMS_OUTPUT, and the messages that are
produced by the PUT and PUT_LINE procedures.

Example: C-7 Anonymous block with DBMS_OUTPUT procedures

SET SERVEROUTPUT ON
/

DECLARE

Routine name Description

DISABLE procedure Disables the message buffer.

ENABLE procedure Enables the message buffer.

GET_LINE procedure Gets a line of text from the message buffer.

GET_LINES procedure Gets one or more lines of text from the message buffer and
places the text into a collection.

NEW_LINE procedure Puts an end-of-line character sequence in the message
buffer.

PUT procedure Puts a string that includes no end-of-line character
sequence in the message buffer.

PUT_LINE procedure Puts a single line that includes an end-of-line character
sequence in the message buffer.
328 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 v_message VARCHAR2(50);
 BEGIN
 DBMS_OUTPUT.PUT(CHR(10));
 DBMS_OUTPUT.PUT_LINE('This is the beginning');
 DBMS_OUTPUT.PUT(CHR(10));

 v_message := 'You''re seeing now the second line.';
 DBMS_OUTPUT.PUT_LINE(v_message);
END;
/
DB20000I The SQL command completed successfully.

This is the beginning

You're seeing now the second line.

C.6 DBMS_PIPE

The DBMS_PIPE module provides a set of routines for sending messages
through a pipe within a session or between sessions that are connected to the
same database.

Pipes are created either implicitly or explicitly during procedure calls. An implicit
pipe is created when a procedure call contains a reference to a pipe name that
does not exist. An explicit pipe is created by calling the CREATE_PIPE function and
specifying the name of the pipe.

Pipes can be private or public. A private pipe can be accessed only by the user
who created the pipe. Even an administrator cannot access a private pipe that
was created by another user. A public pipe can be accessed by any user who has
access to the DBMS_PIPE module. Access level for a pipe is specified in a call to
the CREATE_PIPE function. If no value is specified, the default is to create a private
pipe. All implicit pipes are private.

Table C-6 lists the system-defined routines included in the DBMS_PIPE module.

Table C-6 System-defined routines available in the DBMS_PIPE module

Routine name Description

CREATE_PIPE function Explicitly creates a private or public pipe.

NEXT_ITEM_TYPE function Determines the data type of the next item in a
received message.
 Appendix C. Built-in modules 329

To send a message through a pipe, call the PACK_MESSAGE function to put
individual data items (lines) in a local message buffer that is unique to the current
session. Then, run the SEND_MESSAGE function to send the message through
the pipe.

To receive a message, call the RECEIVE_MESSAGE function to get a message from
the specified pipe. The message is written to the receiving session’s local
message buffer. Then, call the UNPACK_MESSAGE procedure to retrieve the next
data item from the local message buffer and assign it to a specified program
variable. If a pipe contains multiple messages, the RECEIVE_MESSAGE function gets
the messages in FIFO (first in, first out) order.

Each session maintains separate message buffers for messages that are created
by the PACK_MESSAGE function and messages that are retrieved by the
RECEIVE_MESSAGE function. You can use the separate message buffers to build
and receive messages in the same session. However, when consecutive calls
are made to the RECEIVE_MESSAGE function, only the message from the last
RECEIVE_MESSAGE call is preserved in the local message buffer.

Example C-8 shows a simple anonymous block that creates a pipe and sends a
message through the pipe.

Example: C-8 Sending a message through a pipe

DECLARE
 status INT;
BEGIN

PACK_MESSAGE function Puts an item in the session’s local message buffer.

PACK_MESSAGE_RAW procedure Puts an item of type RAW in the session's local
message buffer.

PURGE procedure Removes unreceived messages in the specified pipe.

RECEIVE_MESSAGE function Gets a message from the specified pipe.

REMOVE_PIPE function Deletes an explicitly created pipe.

RESET_BUFFER procedure Resets the local message buffer.

SEND_MESSAGE procedure Sends a message on the specified pipe.

UNIQUE_SESSION_NAME function Returns a unique session name.

UNPACK_MESSAGE procedures Retrieves the next data item from a message and
assigns it to a variable.

Routine name Description
330 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 status := DBMS_PIPE.CREATE_PIPE('pipe1');
 status := DBMS_PIPE.PACK_MESSAGE('message1');
 status := DBMS_PIPE.SEND_MESSAGE('pipe1');
END;
/

Example C-9 shows reading the message from a pipe.

Example: C-9 Receiving a message from a pipe

DECLARE
 status INTEGER;
 itemType INTEGER;
 string1 VARCHAR(50);
BEGIN
 status := DBMS_PIPE.RECEIVE_MESSAGE('pipe1');
 IF (status = 0) THEN
 itemType := DBMS_PIPE.NEXT_ITEM_TYPE();
 IF (itemType = 9) THEN
 DBMS_PIPE.UNPACK_MESSAGE_CHAR(string1);
 DBMS_OUTPUT.PUT_LINE('string1 is: ' || string1);
 ELSE
 DBMS_OUTPUT.PUT_LINE('unexpected data!');
 END IF;
 END IF;
END;
/

You can find more information and examples about DBMS_PIPE in the DB2
Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.apdv.sqlpl.doc/doc/r0053678.html

C.7 DBMS_SQL

The DBMS_SQL module provides a collection of procedures for running dynamic
SQL. The routines in the DBMS_SQL module are useful when you want to
construct and run SQL statements dynamically at run time or call a function that
uses dynamic SQL from within an SQL statement. DDL statements, such as
ALTER TABLE or DROP TABLE, can also be prepared and run when needed.
 Appendix C. Built-in modules 331

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.sqlpl.doc/doc/r0053678.html

Table C-7 lists the system-defined routines included in the DBMS_SQL module.

Table C-7 System-defined routines available in the DBMS_SQL module

Procedure name Description

BIND_VARIABLE_BLOB procedure Provides the input BLOB value for the IN or INOUT
parameter and defines the data type of the output
value to be BLOB for the INOUT or OUT parameter.

BIND_VARIABLE_CHAR procedure Provides the input CHAR value for the IN or INOUT
parameter and defines the data type of the output
value to be CHAR for the INOUT or OUT parameter.

BIND_VARIABLE_CLOB procedure Provides the input CLOB value for the IN or INOUT
parameter and defines the data type of the output
value to be CLOB for the INOUT or OUT parameter.

BIND_VARIABLE_DATE procedure Provides the input DATE value for the IN or INOUT
parameter and defines the data type of the output
value to be DATE for the INOUT or OUT parameter.

BIND_VARIABLE_DOUBLE procedure Provides the input DOUBLE value for the IN or
INOUT parameter and defines the data type of the
output value to be DOUBLE for the INOUT or OUT
parameter.

BIND_VARIABLE_INT procedure Provides the input INTEGER value for the IN or
INOUT parameter and defines the data type of the
output value to be INTEGER for the INOUT or OUT
parameter.

BIND_VARIABLE_NUMBER procedure Provides the input DECFLOAT value for the IN or
INOUT parameter and defines the data type of the
output value to be DECFLOAT for the INOUT or
OUT parameter.

BIND_VARIABLE_RAW procedure Provides the input BLOB(32767) value for the IN or
INOUT parameter and defines the data type of the
output value to be BLOB(32767) for the INOUT or
OUT parameter.

BIND_VARIABLE_TIMESTAMP
procedure

Provides the input TIMESTAMP value for the IN or
INOUT parameter and defines the data type of the
output value to be TIMESTAMP for the INOUT or
OUT parameter.

BIND_VARIABLE_VARCHAR procedure Provides the input VARCHAR value for the IN or
INOUT parameter and defines the data type of the
output value to be VARCHAR for the INOUT or OUT
parameter.
332 Oracle to DB2 Conversion Guide: Compatibility Made Easy

CLOSE_CURSOR procedure Closes a cursor.

COLUMN_VALUE_BLOB procedure Retrieves the value of a column of type BLOB.

COLUMN_VALUE_CHAR procedure Retrieves the value of a column of type CHAR.

COLUMN_VALUE_CLOB procedure Retrieves the value of a column of type CLOB.

COLUMN_VALUE_DATE procedure Retrieves the value of a column of type DATE.

COLUMN_VALUE_DOUBLE procedure Retrieves the value of a column of type DOUBLE.

COLUMN_VALUE_INT procedure Retrieves the value of a column of type
INTEGER.

COLUMN_VALUE_LONG procedure Retrieves the value of a column of type
CLOB(32767).

COLUMN_VALUE_NUMBER procedure Retrieves the value of a column of type
DECFLOAT.

COLUMN_VALUE_RAW procedure Retrieves the value of a column of type
BLOB(32767).

COLUMN_VALUE_TIMESTAMP
procedure

Retrieves the value of a column of type
TIMESTAMP.

COLUMN_VALUE_VARCHAR procedure Retrieves the value of a column of type
VARCHAR.

DEFINE_COLUMN_BLOB procedure Defines the data type of the column to be BLOB.

DEFINE_COLUMN_CHAR procedure Defines the data type of the column to be CHAR.

DEFINE_COLUMN_CLOB procedure Defines the data type of the column to be CLOB.

DEFINE_COLUMN_DATE procedure Defines the data type of the column to be DATE.

DEFINE_COLUMN_DOUBLE procedure Defines the data type of the column to be
DOUBLE.

DEFINE_COLUMN_INT procedure Defines the data type of the column to be
INTEGER.

DEFINE_COLUMN_LONG procedure Defines the data type of the column to be
CLOB(32767).

DEFINE_COLUMN_NUMBER procedure Defines the data type of the column to be
DECFLOAT.

DEFINE_COLUMN_RAW procedure Defines the data type of the column to be
BLOB(32767).

Procedure name Description
 Appendix C. Built-in modules 333

DEFINE_COLUMN_TIMESTAMP
procedure

Defines the data type of the column to be
TIMESTAMP.

DEFINE_COLUMN_VARCHAR procedure Defines the data type of the column to be
VARCHAR.

DESCRIBE_COLUMNS procedure Return a description of the columns that are
retrieved by a cursor.

DESCRIBE_COLUMNS2 procedure Identical to DESCRIBE_COLUMNS, but allows for
column names greater than 32 characters.

EXECUTE procedure Executes a cursor.

EXECUTE_AND_FETCH procedure Executes a cursor and fetches one row.

FETCH_ROWS procedure Fetches rows from a cursor.

IS_OPEN procedure Checks if a cursor is open.

LAST_ROW_COUNT procedure Returns the total number of rows fetched.

OPEN_CURSOR procedure Opens a cursor.

PARSE procedure Parses a DDL statement.

VARIABLE_VALUE_BLOB procedure Retrieves the value of INOUT or OUT parameters as
BLOB.

VARIABLE_VALUE_CHAR procedure Retrieves the value of INOUT or OUT parameters as
CHAR.

VARIABLE_VALUE_CLOB procedure Retrieves the value of INOUT or OUT parameters as
CLOB.

VARIABLE_VALUE_DATE procedure Retrieves the value of INOUT or OUT parameters as
DATE.

VARIABLE_VALUE_DOUBLE procedure Retrieves the value of INOUT or OUT parameters as
DOUBLE.

VARIABLE_VALUE_INT procedure Retrieves the value of INOUT or OUT parameters as
INTEGER.

VARIABLE_VALUE_NUMBER procedure Retrieves the value of INOUT or OUT parameters as
DECFLOAT.

VARIABLE_VALUE_RAW procedure Retrieves the value of INOUT or OUT parameters as
BLOB(32767).

Procedure name Description
334 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Some of the names of the procedures in this module are different from the
corresponding names in the Oracle DBMS_SQL package. For example, the
names of the DBMS_SQL.COLUMN_VALUE_* procedures reflect the data types they
handle: COLUMN_VALUE_NUMBER, COLUMN_VALUE_CHAR, or
COLUMN_VALUE_DATE.

Table C-8 lists the system-defined types and constants available in the
DBMS_SQL module.

Table C-8 DBMS_SQL system-defined types and constants

The EMPLOYEE_DYNAMIC_QUERY procedure in Appendix E, “Code samples” on
page 351 shows an example of using DBMS_SQL.

C.8 DBMS_UTILITY

The DBMS_UTILITY module provides various utility routines for gathering
statistics for the entire database or a schema, compiling or validating objects,
running DDL statements, and getting information about database objects.

VARIABLE_VALUE_TIMESTAMP
procedure

Retrieves the value of INOUT or OUT parameters as
TIMESTAMP.

VARIABLE_VALUE_VARCHAR
procedure

Retrieves the value of INOUT or OUT parameters as
VARCHAR.

Name Type or
constant

Description

DESC_REC Type A record of column information

DESC_REC2 Type A record of column information

DESC_TAB Type An array of records of type DESC_REC

DESC_TAB2 Type An array of records of type DESC_REC2

NATIVE Constant The only value that is supported for the
language_flag parameter of the PARSE procedure

Procedure name Description
 Appendix C. Built-in modules 335

Table C-9 lists the system-defined routines available in the
DBMS_UTILITY module.

Table C-9 System-defined routines available in the DBMS_UTILITY module

Routine name Description

ANALYZE_DATABASE procedure Provides the capability to gather statistics on tables,
clusters, and indexes in the database.

ANALYZE_PART_OBJECT
procedure

Analyzes a partitioned table or partitioned index.

ANALYZE_SCHEMA procedure Provides the capability to gather statistics on tables,
clusters, and indexes in the specified schema.

CANONICALIZE procedure Canonicalizes a string (for example, strips off white
space).

COMMA_TO_TABLE procedure Converts a comma-delimited list of names into an
array of names where each entry in the list becomes
an element in the array.

COMPILE_SCHEMA procedure Recompiles all objects (functions, procedures,
triggers, and modules) in a schema.

DB_VERSION procedure Returns the version number of the database.

EXEC_DDL_STATEMENT
procedure

Executes a DDL statement.

GET_CPU_TIME function Returns the processor time in hundredths of a second
from some arbitrary point in time.

GET_DEPENDENCY procedure Lists all objects that are dependent upon the object.

GET_HASH_VALUE function Computes a hash value for a string.

GET_TIME function Returns the current time in hundredths of a second.

NAME_RESOLVE procedure Obtains schema and other membership information of
a database object. (Synonyms are resolved to their
base objects.)

NAME_TOKENIZE procedure Parses the given name into its component parts.
(Names without double quotation marks are put into
uppercase, and double quotation marks are stripped
from names with double quotation marks.)
336 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Table C-10 lists the system-defined variables and types available in the
DBMS_UTILITY module.

Table C-10 DBMS_UTILITY public variables

Example C-10 shows the use of COMMA_TO_TABLE to change a comma
delimited list into a table.

Example: C-10 COMMA_TO_TABLE examples

CREATE OR REPLACE PROCEDURE list_to_table (
 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE_LNAME(p_list,v_length,r_lname);
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
END;
/
set serveroutput on
call list_to_table('schema.dept, schema.emp, schema.jobhist');
schema.dept
schema.emp
schema.jobhist

TABLE_TO_COMMA procedure Converts an array of names into a comma-delimited
list of names. Each array element becomes a list entry.

VALIDATE procedure Provides the capability to change the state of an
invalid routine to valid.

Public variables Data type Description

lname_array TABLE For lists of long names

uncl_array TABLE For lists of users and names

Routine name Description
 Appendix C. Built-in modules 337

You can find details and examples about the usage of these procedures and
variables in the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2
.luw.apdv.sqlpl.doc/doc/r0055155.html

C.9 UTL_DIR

The UTL_DIR module implements routines for maintaining directory aliases that
are used with the UTL_FILE module. You can create, drop, and gather
information about the directory alias using this module.

Table C-11 shows the procedures that are defined in this module.

Table C-11 System-defined routines available in the UTL_DIR module

Example C-11 shows how to create a directory alias.

Example: C-11 Create a directory alias

BEGIN
 UTL_DIR.CREATE_DIRECTORY('mydir', '/home/user/temp/mydir');
END;
/

If the directory alias exists, you can use the CREATE_OR_REPLACE_DIRECTORY
procedure.

Directory information is stored in the SYSTOOLS.DIRECTORIES table, which is
created in the SYSTOOLSPACE when you first reference this module for
each database.

Routine name Description

CREATE_DIRECTORY procedure Creates a directory alias for the specified
path.

CREATE_OR_REPLACE_DIRECTORY
procedure

Creates or replaces a directory alias for the
specified path.

DROP_DIRECTORY procedure Drops the specified directory alias.

GET_DIRECTORY_PATH procedure Gets the corresponding path for the specified
directory alias.
338 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.apdv.sqlpl.doc/doc/r0055155.html

Example C-12 demonstrates how to retrieve the corresponding path for a
directory alias.

Example: C-12 Get the path for a directory alias

SET SERVEROUTPUT ON
/

DECLARE
 v_dir VARCHAR2(200);
BEGIN
 UTL_DIR.GET_DIRECTORY_PATH('mydir', v_dir);
 DBMS_OUTPUT.PUT_LINE('Directory path: ' || v_dir);
END;
/

--This example results in the following output:
 Value of output parameters

 Parameter Name : PATH
 Parameter Value : home/myuser/temp/mydir
 Return Status = 0

Example C-13 uses the DROP_DIRECTORY procedure to drop the specified
directory alias.

Example: C-13 Drop a directory alias

BEGIN
 UTL_DIR.DROP_DIRECTORY('mydir');
END;

C.10 UTL_MAIL

The UTL_MAIL module provides the capability to send email messages with or
without attachments. To successfully send an email message using this module,
the database configuration parameter SMTP_SERVER must contain one or more
valid Simple Mail Transfer Protocol (SMTP) server addresses.
 Appendix C. Built-in modules 339

Table C-12 lists the system-defined routines included in the UTL_MAIL module.

Table C-12 System-defined routines available in the UTL_MAIL module

Example C-14 shows how to set up your SMTP server entries. To set up a list of
SMTP servers, separate them by commas. You can specify non-default port
numbers if necessary. When it sends email messages, DB2 tries to connect to
the first listed server. If it is unreachable, DB2 tries other servers in the
listed order.

Example: C-14 SMTP server entry setup

-- Set up a single SMTP serMver that uses port 2000:
-- (if a port is not specified, the default port 25 will be used)
db2 update db cfg using smtp_server 'smtp2.ibm.com:2000'
--
-- Set up a list of SMTP server
db2 update db cfg using smtp_server
 'smtp1.example.com, smtp2.example.com:23, smtp3.example.com:2000'

Example C-15 demonstrates an anonymous block that sends an email message.

Example: C-15 Sending an email with the UTL_MAIL module

DECLARE
 v_sender VARCHAR2(50);
 v_recipients VARCHAR2(50);
 v_subj VARCHAR2(250);
 v_msg VARCHAR2(200);
BEGIN
 v_sender := 'ibm_user@ibm.com';
 v_recipients := 'recipient1@mycompany.com, recipient2@mycompany.com';
 v_subj := 'Test UTL_MAIL module in DB2';
 v_msg := ' UTL_MAIL module works great! ' ||
 'Please, setup properly your server!';
 UTL_MAIL.SEND(v_sender,v_recipients,NULL,NULL,v_subj,v_msg);
END;
/

Routine name Description

SEND procedure Packages and sends an email to an SMTP server.

SEND_ATTACH_RAW procedure Same as the SEND procedure, but with BLOB (binary)
attachments.

SEND_ATTACH_VARCHAR2
procedure

Same as the SEND procedure, but with VARCHAR (text)
attachments.
340 Oracle to DB2 Conversion Guide: Compatibility Made Easy

C.11 UTL_SMTP

The UTL_SMTP module provides a set of routines for sending email over SMTP.
Compared to the UTL_MAIL module, UTL_SMTP gives you more control over
sending email messages.

Table C-13 lists the system-defined routines included in the UTL_SMTP module.

Table C-13 System-defined routines available in the UTL_SMTP module

Routine name Description

CLOSE_DATA procedure Ends an email message.

COMMAND procedure Runs an SMTP command.

COMMAND_REPLIES
procedure

Runs an SMTP command where multiple reply lines are
expected.

DATA procedure Specifies the body of an email message.

EHLO procedure Performs initial handshaking with an SMTP server and
returns extended information.

HELO procedure Performs initial handshaking with an SMTP server.

HELP procedure Sends the HELP command.

MAIL procedure Starts a mail transaction.

NOOP procedure Sends the null command.

OPEN_CONNECTION function Opens a connection.

OPEN_CONNECTION
procedure

Opens a connection.

OPEN_DATA procedure Sends the DATA command.

QUIT procedure Terminates the SMTP session and disconnects.

RCPT procedure Specifies the recipient of an email message.

RSET procedure Terminates the current mail transaction.

VRFY procedure Validates an email address.

WRITE_DATA procedure Writes a portion of the email message.

WRITE_RAW_DATA
procedure

Writes a portion of the email message that consists of RAW
data.
 Appendix C. Built-in modules 341

Table C-14 lists the public variables available in the module.

Table C-14 System-defined types available in the UTL_SMTP module

The send_mail procedure in Example C-16 constructs and sends a text email
message using the UTL_SMTP module and the UTL_SMTP.DATA method. This
example also demonstrates how to call this procedure.

Example: C-16 Sending a message with the UTL_SMTP module

CREATE OR REPLACE PROCEDURE send_mail (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,
 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port, v_conn, 20, v_reply);
 UTL_SMTP.HELO(v_conn,p_mailhost);
 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.DATA(v_conn, SUBSTR(
 'Date: ' || TO_CHAR(SYSDATE,
 'Dy, DD Mon YYYY HH24:MI:SS') || v_crlf
 || 'From: ' || p_sender || v_crlf
 || 'To: ' || p_recipient || v_crlf
 || 'Subject: ' || p_subj || v_crlf
 || p_msg
 , 1, 32767));
 UTL_SMTP.QUIT(v_conn);
END;
/

Public variable Data type Description

connection RECORD Provides a description of an SMTP connection.

reply RECORD Provides a description of an SMTP reply line.
(REPLIES is an array of SMTP reply lines.)
342 Oracle to DB2 Conversion Guide: Compatibility Made Easy

call send_mail('name1@mycompany.com', 'name2@mycompany.com', 'Test
UTL_SMTP module on DB2','Please, setup properly your
server!','smtp.mycompany.com');

Example C-17 uses the OPEN_DATA, WRITE_DATA, and CLOSE_DATA procedures
instead of the DATA procedure. WRITE_DATA gives you more control over the email
message header and contents. The call to the send_mail_2 procedure is identical
to the call of send_mail procedure in Example C-16 on page 342.

Example: C-17 Sending a message with the UTL_SMTP module

CREATE OR REPLACE PROCEDURE send_mail_2 (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,
 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port,v_conn, 20, v_reply);
 UTL_SMTP.HELO(v_conn,p_mailhost);
 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.OPEN_DATA(v_conn);
 UTL_SMTP.WRITE_DATA(v_conn,'From: ' || p_sender || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'To: ' || p_recipient || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'Subject: ' || p_subj || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,v_crlf || p_msg);
 UTL_SMTP.CLOSE_DATA(v_conn);
 UTL_SMTP.QUIT(v_conn);
END;
/

 Appendix C. Built-in modules 343

344 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Appendix D. DB2CI sample program

This appendix provides a sample DB2CI program.

Example D-1 shows a simplified program that uses Oracle Call Interface (OCI)
functions to read data from the ORG table in the DB2 SAMPLE database. It
illustrates some of the common OCI calls. This example uses utility functions that
are defined in utilci.c, and utilci.h that are part of the DB2CI samples
provided with DB2 10.

Example: D-1 DB2CI table read example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <db2ci.h>
#include "utilci.h" /* Header file for DB2CI sample code */

#define ROWSET_SIZE 5

int TbSelectWithParam(OCIEnv * envhp, OCISvcCtx * svchp, OCIError * errhp);

int main(int argc, char *argv[])
{
 sb4 ciRC = OCI_SUCCESS;
 int rc = 0;
 OCIEnv * envhp; /* environment handle */
 OCISvcCtx * svchp; /* connection handle */
 OCIError * errhp; /* error handle */

D

© Copyright IBM Corp. 2009, 2013. All rights reserved. 345

 char dbAlias[SQL_MAX_DSN_LENGTH + 1];
 char user[MAX_UID_LENGTH + 1];
 char pswd[MAX_PWD_LENGTH + 1];

 /* check the command line arguments */
 rc = CmdLineArgsCheck1(argc, argv, dbAlias, user, pswd);
if (rc != 0)
{
 return rc;
}

printf("\nTHIS SAMPLE SHOWS HOW TO READ TABLES.\n");

/* initialize the DB2CI application by calling a helper
 utility function defined in utilci.c */
rc = CIAppInit(dbAlias,
 user,
 pswd,
 &envhp,
 &svchp,
 &errhp);
if (rc != 0)
{
 return rc;
}

/* SELECT with parameter markers */
rc = TbSelectWithParam(envhp, svchp, errhp);

/* terminate the DB2CI application by calling a helper
 utility function defined in utilci.c */
rc = CIAppTerm(&envhp, &svchp, errhp, dbAlias);

return rc;
}/* main */

/* perform a SELECT that contains parameter markers */
int TbSelectWithParam(OCIEnv * envhp, OCISvcCtx * svchp, OCIError * errhp)
{
sb4 ciRC = OCI_SUCCESS;
int rc = 0;
OCIStmt * hstmt; /* statement handle */
OCIDefine * defnhp1 = NULL; /* define handle */
OCIDefine * defnhp2 = NULL; /* define handle */
OCIBind * hBind = NULL; /* bind handle */

char *stmt = (char *)
"SELECT deptnumb, location FROM org WHERE division = :1";

 char divisionParam[15];

 struct
 {
346 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 sb2 ind;
 sb2 val;
 ub2 length;
 ub2 rcode;
 }
 deptnumb; /* variable to be bound to the DEPTNUMB column */

 struct
 {
 sb2 ind;
 char val[15];
 ub2 length;
 ub2 rcode;
 }
 location; /* variable to be bound to the LOCATION column */

 printf("\n---");
 printf("\nUSE THE DB2CI FUNCTIONS\n");
 printf(" OCIHandleAlloc\n");
 printf(" OCIStmtPrepare\n");
 printf(" OCIStmtExecute\n");
 printf(" OCIBindByPos\n");
 printf(" OCIDefineByPos\n");
 printf(" OCIStmtFetch\n");
 printf(" OCIHandleFree\n");
 printf("TO PERFORM A SELECT WITH PARAMETERS:\n");

 /* allocate a statement handle */
 ciRC = OCIHandleAlloc((dvoid *)envhp, (dvoid **)&hstmt, OCI_HTYPE_STMT, 0, NU
LL);
 ERR_HANDLE_CHECK(errhp, ciRC);

 printf("\n Prepare the statement\n");
 printf(" %s\n", stmt);
/* prepare the statement */
 ciRC = OCIStmtPrepare(
 hstmt,
 errhp,
 (OraText *)stmt,
 strlen(stmt),
 OCI_NTV_SYNTAX,
 OCI_DEFAULT);
 ERR_HANDLE_CHECK(errhp, ciRC);

 printf("\n Bind divisionParam to the statement\n");
 printf(" %s\n", stmt);

 /* bind divisionParam to the statement */
 ciRC = OCIBindByPos(
 hstmt,
 &hBind,
 errhp,
 1,
 divisionParam,
 Appendix D. DB2CI sample program 347

 sizeof(divisionParam),
 SQLT_STR,
 NULL,
 NULL,
 NULL,
 0,
 NULL,
 OCI_DEFAULT);
 ERR_HANDLE_CHECK(errhp, ciRC);

 /* execute the statement for divisionParam = Eastern */
 printf("\n Execute the prepared statement for\n");
 printf(" divisionParam = 'Eastern'\n");
 strcpy(divisionParam, "Eastern");
/* execute the statement */
 ciRC = OCIStmtExecute(
 svchp,
 hstmt,
 errhp,
 0,
 0,
 NULL,
 NULL,
 OCI_DEFAULT);
 ERR_HANDLE_CHECK(errhp, ciRC);

 /* bind column 1 to variable */
 ciRC = OCIDefineByPos(
 hstmt,
 &defnhp1,
 errhp,
 1,
 &deptnumb.val,
 sizeof(sb2),
 SQLT_INT,
 &deptnumb.ind,
 &deptnumb.length,
 &deptnumb.rcode,
 OCI_DEFAULT);
 ERR_HANDLE_CHECK(errhp, ciRC);

 /* bind column 2 to variable */
 ciRC = OCIDefineByPos(
 hstmt,
 &defnhp2,
 errhp,
 2,
 location.val,
 sizeof(location.val),
 SQLT_STR,
 &location.ind,
 &location.length,
 &location.rcode,
 OCI_DEFAULT);
348 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 ERR_HANDLE_CHECK(errhp, ciRC);

 printf("\n Fetch each row and display.\n");
 printf(" DEPTNUMB LOCATION \n");
 printf(" -------- -------------\n");

 /* fetch each row and display */
 ciRC = OCIStmtFetch(
 hstmt,
 errhp,
 1,
 OCI_FETCH_NEXT,
 OCI_DEFAULT);
 ERR_HANDLE_CHECK(errhp, ciRC);

 if (ciRC == OCI_NO_DATA)
 {
 printf("\n Data not found.\n");
 }
 while (ciRC != OCI_NO_DATA)
 {
 printf(" %-8d %-14.14s \n", deptnumb.val, location.val);

 /* fetch next row */
 ciRC = OCIStmtFetch(
 hstmt,
 errhp,
 1,
 OCI_FETCH_NEXT,
 OCI_DEFAULT);
 ERR_HANDLE_CHECK(errhp, ciRC);
 }

 /* free the statement handle */
 ciRC = OCIHandleFree(hstmt, OCI_HTYPE_STMT);
 ERR_HANDLE_CHECK(errhp, ciRC);

 return rc;
} /* TbSelectWithParam */

The easiest way to compile this sample program is to use the bldapp script that is
provided along with the DB2CI samples in sqllib/samples/db2ci, as shown in
Example D-2. Copy the utility source code to the directory where you created the
sample program (myoci.c) and run bldapp.

Example: D-2 Compiling and linking a DB2CI program myoci.c

cp /home/db2inst1/sqllib/samples/db2ci/utilci.* .
/home/db2inst1/sqllib/samples/db2ci/bldapp myoci
 Appendix D. DB2CI sample program 349

350 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Appendix E. Code samples

This appendix provides the following Oracle enablement PL/SQL code samples:

� Oracle DDL statements that are used to create all database objects in the
source Oracle database

� DB2 DDL statements that define the corresponding database objects that are
enabled in the DB2 database

� An example of the DB2 10.5 deep nested objects feature

You can download these DDL scripts from the IBM Redbooks website as
described in Appendix F, “Additional material” on page 425.

E

© Copyright IBM Corp. 2009, 2013. All rights reserved. 351

E.1 Code disclaimer

IBM does not warrant or represent that the code provided is complete or
up-to-date. IBM does not warrant, represent or imply reliability, serviceability, or
function of the code. IBM is under no obligation to update content nor provide
further support.

All code is provided “as is,” with no warranties or guarantees whatsoever. IBM
expressly disclaims to the fullest extent permitted by law all express, implied,
statutory, and other warranties, guarantees, or representations, including, without
limitation, the warranties of merchantability, fitness for a particular purpose, and
non-infringement of proprietary and intellectual property rights. You understand
and agree that you use these materials, information, products, software,
programs, and services, at your own discretion and risk and that you will be
solely responsible for any damages that may result, including loss of data or
damage to your computer system.

In no event will IBM be liable to any party for any direct, indirect, incidental,
special, exemplary, or consequential damages of any type whatsoever related to
or arising from use of the code found herein, without limitation, any lost profits,
business interruption, lost savings, loss of programs, or other data, even if IBM is
expressly advised of the possibility of such damages. This exclusion and waiver
of liability applies to all causes of action, whether based on contract, warranty,
tort, or any other legal theories.

E.2 Oracle DDL statements

The sample Oracle DDL statements in this section are used in this book for
demonstration purposes.

E.2.1 Tables and views

Example E-1 is the sample Oracle DDL statements for the tables and views.

Example: E-1 Tables and views Oracle DDL statements

CREATE SEQUENCE EMPLOYEE_SEQUENCE
 MINVALUE 1
 MAXVALUE 999999999999999999999999999
 INCREMENT BY 1
 START WITH 2
 CACHE 20 NOCYCLE NOORDER
/

352 Oracle to DB2 Conversion Guide: Compatibility Made Easy

CREATE SEQUENCE CUSTOMER_SEQUENCE
 MINVALUE 1
 MAXVALUE 999999999999999999999999999
 INCREMENT BY 1
 START WITH 2
 CACHE 20 NOCYCLE NOORDER
/

CREATE table DEPARTMENTS (
 "DEPT_CODE" CHAR(3) NOT NULL,
 "DEPT_NAME" VARCHAR2(30),
 "TOTAL_PROJECTS" NUMBER,
 "TOTAL_EMPLOYEES" NUMBER)
/

CREATE table ACCOUNTS (
 "ACCT_ID" NUMBER(38) NOT NULL,
 "DEPT_CODE" CHAR(3) NOT NULL,
 "ACCT_DESC" VARCHAR2(2000),
 "MAX_EMPLOYEES" NUMBER(3),
 "CURRENT_EMPLOYEES" NUMBER(3),
 "NUM_PROJECTS" NUMBER(1),
 "CREATE_DATE" DATE DEFAULT SYSDATE,
 "CLOSED_DATE" DATE DEFAULT SYSDATE)
/

CREATE table CUSTOMERS (
 "CUST_ID" NUMBER(5),
 "CUST_DETAILS_XML" XMLType ,
 "LAST_UPDATE_DATE" DATE)
/

CREATE table EMPLOYEES (
 "EMP_ID" NUMBER(5) NOT NULL,
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(20),
 "CURRENT_PROJECTS" NUMBER(3),
 "EMP_MGR_ID" NUMBER(5),
 "DEPT_CODE" CHAR(3) NOT NULL,
 "ACCT_ID" NUMBER(3) NOT NULL,
 "OFFICE_ID" NUMBER(5),
 "BAND" CHAR(1),
 "CREATE_DATE" TIMESTAMP(3) DEFAULT SYSDATE)
/

CREATE table EMP_DETAILS (
 "EMP_ID" NUMBER(5) NOT NULL,
 "EDUCATION" CLOB NOT NULL,
 Appendix E. Code samples 353

 "WORK_EXPERIENCE" CLOB NOT NULL,
 "PHOTO_FORMAT" VARCHAR2(10) NOT NULL,
 "PICTURE" BLOB)
/

CREATE table OFFICES (
 "OFFICE_ID" NUMBER(5) NOT NULL,
 "BUILDING" VARCHAR2(25),
 "NUMBER_SEATS" NUMBER(4),
 "DESCRIPTION" VARCHAR2(50))
/

COMMENT ON TABLE DEPARTMENTS IS 'Contains information about departments and their names'
/

COMMENT ON TABLE ACCOUNTS IS 'Contains information about accounts and number of projects'
/

COMMENT ON TABLE CUSTOMERS IS 'Contains information about customers in XML format'
/

COMMENT ON TABLE EMPLOYEES IS 'Contains information about employees'
/

COMMENT ON TABLE EMP_DETAILS IS 'Contains additional information on employees like biography
and picture'
/

COMMENT ON TABLE OFFICES IS 'Contains information about buildigs and offices'
/

ALTER TABLE DEPARTMENTS ADD CONSTRAINT PK_DEPT_CODE PRIMARY KEY ("DEPT_CODE")
/

ALTER TABLE ACCOUNTS ADD CONSTRAINT PK_ACCOUNTS PRIMARY KEY ("DEPT_CODE", "ACCT_ID")
/

ALTER TABLE EMPLOYEES ADD CONSTRAINT PK_EMPLOYEES PRIMARY KEY ("EMP_ID")
/

ALTER TABLE EMP_DETAILS ADD CONSTRAINT PK_EMP_DETAILS PRIMARY KEY ("EMP_ID")
/

ALTER TABLE OFFICES ADD CONSTRAINT PK_OFFICES PRIMARY KEY ("OFFICE_ID")
/

ALTER TABLE ACCOUNTS ADD CONSTRAINT FK_ACC_DEPT_CODE FOREIGN KEY ("DEPT_CODE") REFERENCES
DEPARTMENTS ("DEPT_CODE")
/

354 Oracle to DB2 Conversion Guide: Compatibility Made Easy

ALTER TABLE EMPLOYEES ADD CONSTRAINT FK_EMP_MGR_ID FOREIGN KEY ("EMP_MGR_ID") REFERENCES
EMPLOYEES ("EMP_ID")
/

ALTER TABLE EMPLOYEES ADD CONSTRAINT FK_EMP_OFFICE_ID FOREIGN KEY ("OFFICE_ID") REFERENCES
OFFICES ("OFFICE_ID")
/

ALTER TABLE EMPLOYEES ADD CONSTRAINT M_DEPT_CODE_ACCT_ID FOREIGN KEY ("DEPT_CODE", "ACCT_ID")
REFERENCES ACCOUNTS ("DEPT_CODE", "ACCT_ID")
/

ALTER TABLE EMP_DETAILS ADD CONSTRAINT FK_EMP_DETAILS_ID FOREIGN KEY ("EMP_ID") REFERENCES
EMPLOYEES ("EMP_ID") ON DELETE CASCADE
/

ALTER TABLE EMPLOYEES ADD CONSTRAINT BAND_VALIDATION CHECK (BAND IN ('1', '2', '3', '4', '5'))
/

CREATE INDEX ACCT_DEPT_IND ON ACCOUNTS (DEPT_CODE)
/

CREATE INDEX EMP_SEARCH_IND ON EMPLOYEES(LAST_NAME, FIRST_NAME, DEPT_CODE)
/

CREATE INDEX CUSTOMER_CITY_IND ON CUSTOMERS a
 (XMLType.getStringVal(
 XMLType.extract(a.cust_details_xml,'//customer-details/addr/city/text()')))
/

CREATE GLOBAL TEMPORARY TABLE TEMP_TABLE (
 "NUM_COL" NUMBER,
 "CHAR_COL" VARCHAR2(60))
/

CREATE OR REPLACE VIEW ORGANIZATION_STRUCTURE ("ORG_LEVEL", "FULL_NAME", "DEPARTMENT") AS
 /*
 ||---
 || DESCRIPTION: Dispaly hierarcy of people in the organization structure
 ||
 ||
 || DEMO PURPOSE: Support of recursive SQL "START WITH ... CONNECT BY" along
|| with LEVEL keyword.

 || New built-in functions INITCAP and NVL.
 || New syntax for outer join - (+)
||--

 */
SELECT
 Appendix E. Code samples 355

 LEVEL as ORG_LEVEL,
 SUBSTR((LPAD(' ', 4 * LEVEL - 1) || INITCAP(e.last_name) || ', ' || INITCAP(e.first_name)),
1, 40),
 NVL(d.dept_name, 'Uknown')
FROM
 EMPLOYEES e,
 DEPARTMENTS d
WHERE
 e.dept_code=d.dept_code(+)
START WITH emp_id = 1
CONNECT BY NOCYCLE PRIOR emp_id = emp_mgr_id
/

-- public synonyms on sequence
CREATE PUBLIC SYNONYM EMPLOYEE_SEQUENCE FOR SALES.EMPLOYEE_SEQUENCE//

-- public synonyms on tables
CREATE PUBLIC SYNONYM DEPARTMENTS FOR SALES.DEPARTMENTS //
CREATE PUBLIC SYNONYM EMPLOYEES FOR SALES.EMPLOYEES //
CREATE PUBLIC SYNONYM EMP_DETAILS FOR SALES.EMP_DETAILS/
CREATE PUBLIC SYNONYM OFFICES FOR SALES.OFFICES /

--public synonyms on views
CREATE PUBLIC SYNONYM ORGANIZATION_STRUCTURE FOR SALES.ORGANIZATION_STRUCTURE/

--public synonyms on packages
CREATE PUBLIC SYNONYM HELPER FOR SALES.HELPER/
CREATE PUBLIC SYNONYM ACCOUNT_PACKAGE FOR SALES.ACCOUNT_PACKAGE/

--public synonym on procedures for visualising information
CREATE PUBLIC SYNONYM EMPLOYEE_DYNAMIC_QUERY FOR SALES.EMPLOYEE_DYNAMIC_QUERY/
CREATE PUBLIC SYNONYM SAVE_ORG_TO_FILE FOR SALES.SAVE_ORG_TO_FILE/

CREATE OR REPLACE TYPE EMP_INFO_TYPE AS OBJECT (
 EMP_ID NUMBER(5),
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(20),
 BAND CHAR(1))
/

356 Oracle to DB2 Conversion Guide: Compatibility Made Easy

E.2.2 Packages, procedures, and functions

Example E-2 is the sample Oracle DDL statements for packages, procedures,
and functions.

Example: E-2 Packages, procedures, and functions Oracle DDL statements

--===
-- PACKAGES CREATION
--===

CREATE OR REPLACE PACKAGE HELPER AS
 /* ||--
 || DESCRIPTION: the purpose of this package is to create types that can be used by
 || stand-alone procedures and functions
 ||
 || DEMO PURPOSE: Definition of package for creating new types, Reference Cursor,
 || Record data type, Variable arrays
 || ||---
 */

-- type declaration
 TYPE rct1 IS REF CURSOR;
 TYPE emp_array_type IS VARRAY(10) OF EMP_INFO_TYPE;

END HELPER;
/

CREATE OR REPLACE PACKAGE ACCOUNT_PACKAGE AS
 /*
||--

 || DESCRIPTION: Account package contains the procedures to manage the accounts.
 || using the procedures in this package, users can add an account, remove
 || an account, provide account information in form of associative array
 || and display the account information using server output.
 ||
 || DEMO PURPOSE: Package header declaration, anchor datatypes like %TYPE and %ROWTYPE,
 || definition of associative array TYPE ... IS TABLE OF ... INDEX BY ...
 ||
 ||---
 */

-- type declaration
 TYPE customer_name_cache IS TABLE OF EMPLOYEES%ROWTYPE INDEX BY PLS_INTEGER;

-- PROCEDURE declaration
 PROCEDURE Add_Account(p_AccountId IN ACCOUNTS.acct_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE,
 Appendix E. Code samples 357

 p_AccountDesc IN ACCOUNTS.acct_desc%TYPE,
 p_MaxEmployees IN ACCOUNTS.max_employees%TYPE);

 PROCEDURE Remove_Account(p_AccountId IN ACCOUNTS.acct_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE);

 PROCEDURE Account_List(p_dept_code IN ACCOUNTS.dept_code%TYPE,
 p_acct_id IN ACCOUNTS.acct_id%TYPE,
 p_Employees_Name_Cache OUT Customer_Name_Cache);

 PROCEDURE Display_Account_List(p_dept_code IN ACCOUNTS.dept_code%TYPE,
 p_acct_id IN ACCOUNTS.acct_id%TYPE);

END ACCOUNT_PACKAGE;
/

CREATE OR REPLACE PACKAGE BODY ACCOUNT_PACKAGE AS

 PROCEDURE ADD_ACCOUNT(p_AccountId IN ACCOUNTS.acct_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE,
 p_AccountDesc IN ACCOUNTS.acct_desc%TYPE,
 p_MaxEmployees IN ACCOUNTS.max_employees%TYPE) IS
 /*
 ||--
 || DESCRIPTION: Add a new Employee into the specified Account
 ||
 ||
 || DEMO PURPOSE: predefined exceptions like DUP_VAL_ON_INDEX and OTHERS
 ||
 ||
 || EXAMPLE: EXEC ACCOUNT_PACKAGE.ADD_ACCOUNT(1, 1, 'Description', 10)
 ||
 ||--
 */

 BEGIN

 INSERT INTO ACCOUNTS (acct_id, dept_code, acct_desc, max_employees, current_employees,
num_projects)
 VALUES (p_AccountId, p_DeptCode, p_AccountDesc, p_MaxEmployees, 0, 0);

 DBMS_OUTPUT.PUT_LINE('Account ' || p_AccountId || ' successfully created .');

 EXCEPTION
WHEN dup_val_on_index THEN

 DBMS_OUTPUT.PUT_LINE('Duplicate Account was rejected');
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
358 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 RAISE;

 END ADD_ACCOUNT;

 PROCEDURE REMOVE_ACCOUNT(p_AccountId IN ACCOUNTS.acct_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE) IS
 /*
 ||--
 || DESCRIPTION: Removes the Account from database based on the account id and
 || department code
 ||
 || DEMO PURPOSE: Exception declaration
 ||
 ||
 || EXAMPLE: EXEC ACCOUNT_PACKAGE.REMOVE_ACCOUNT(1, 1)
 ||
 ||--
 */

-- exception declaration
 e_AccountNotRegistered EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_AccountNotRegistered, -20050);

 BEGIN
 DELETE FROM ACCOUNTS WHERE acct_id = p_AccountId AND dept_code = p_DeptCode;

 IF SQL%NOTFOUND THEN
 RAISE e_AccountNotRegistered;
 END IF;

 DBMS_OUTPUT.PUT_LINE('Account ' || p_AccountId || ' was successfuly removed.');

 EXCEPTION

WHEN e_AccountNotRegistered THEN
DBMS_OUTPUT.PUT_LINE('Account ' || p_AccountId || ' does not exist.');

WHEN others THEN
RAISE;

 END REMOVE_ACCOUNT;

 PROCEDURE ACCOUNT_LIST(p_dept_code IN ACCOUNTS.dept_code%TYPE,
 p_acct_id IN ACCOUNTS.acct_id%TYPE,
 p_Employees_Name_Cache OUT CUSTOMER_NAME_CACHE) IS
 /*
 Appendix E. Code samples 359

 ||--
 || DESCRIPTION: Stores all employees from particular department in the associative
 || array
 ||
 || DEMO PURPOSE: Cursor definition, Cursor iteration through LOOP, population of
 || associative array
 ||--
 */

-- variable declaration
 v_NumEmployees NUMBER := 1;

-- cursor declaration
 CURSOR c_RegisteredEmployees IS
 -- Local cursor to fetch the registered Employees.
 SELECT *
 FROM EMPLOYEES
 WHERE dept_code = p_dept_code
 AND acct_id = p_acct_id;

 BEGIN
 /* p_NumEmployees will be the table index. It will start at 0,
 and be incremented each time through the fetch loop.
 At the end of the loop, it will have the number of rows
 fetched, and therefore the number of rows returned in p_IDs. */

 OPEN c_RegisteredEmployees;

 LOOP
 FETCH c_RegisteredEmployees INTO p_Employees_Name_Cache(v_NumEmployees);
 EXIT WHEN c_RegisteredEmployees%NOTFOUND;
 v_NumEmployees := v_NumEmployees + 1;
 END LOOP;

 CLOSE c_RegisteredEmployees;

 END ACCOUNT_LIST;

 PROCEDURE DISPLAY_ACCOUNT_LIST(p_dept_code IN ACCOUNTS.dept_code%TYPE,
 p_acct_id IN ACCOUNTS.acct_id%TYPE) IS
 /*
 ||--
 || DESCRIPTION: Displays the information about Employees and number of their project
 || assigned to specific account.
 || DEMO PURPOSE: Usage of associative arrays, DBMS_OUTPUT built-in package,
 || call to the procedure in the same package
 ||
 || EXAMPLE: EXEC ACCOUNT_PACKAGE.DISPLAY_ACCOUNT_LIST('A00', 1);
360 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 ||
 ||--
 */
 -- variable declaration
 v_customer_name_cache CUSTOMER_NAME_CACHE;
 k NUMBER := 1;

 -- definition of the nested function
 FUNCTION AVERAGE_BAND (p_Department IN EMPLOYEES.dept_code%TYPE,
 p_ACCT_ID IN EMPLOYEES.acct_id%TYPE)
 RETURN CHAR AS
 /*
 ||--
 || DESCRIPTION: Nested procedure to derive the average band of employees in the
 || department
 ||
 || DEMO PURPOSE: Cursor definition, cursor attributes %NOTFOUND and %ROWCOUNT,
 || DECODE built-in function, user defined exception
 || ||--
 */

 -- variable declaration
 v_AverageBAND CHAR(1);
 v_NumericBand NUMBER;
 v_TotalBand NUMBER:=0;
 v_NumberEmployees NUMBER;

 -- CURSOR declaration
 CURSOR c_Employees IS
 SELECT band
 FROM EMPLOYEES
 WHERE dept_code = p_Department
 AND acct_id = p_ACCT_ID;

 BEGIN
 OPEN c_Employees;
 LOOP
 FETCH c_Employees INTO v_NumericBand;
 EXIT WHEN c_Employees%NOTFOUND;
 v_TotalBand := v_TotalBand + v_NumericBand;
 END LOOP;

 v_NumberEmployees:=c_Employees%ROWCOUNT;
 IF(v_NumberEmployees = 0) THEN
 RAISE_APPLICATION_ERROR(-20001, 'No employees exist for ' || p_Department || ' ' ||
p_ACCT_ID);
 END IF;

 Appendix E. Code samples 361

 SELECT DECODE(ROUND(v_TotalBand/v_NumberEmployees), 5, 'A', 4, 'B', 3, 'C', 2, 'D', 1,
'E')
 INTO v_AverageBand
 FROM DUAL;

 RETURN v_AverageBand;

 END AVERAGE_BAND;

 BEGIN
 DBMS_OUTPUT.PUT_LINE('List of employees');
 DBMS_OUTPUT.PUT_LINE('----------------------------');
 account_list(p_dept_code, p_acct_id, v_customer_name_cache);

 FOR k IN 1..v_customer_name_cache.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE('Record id : ' || k);
 DBMS_OUTPUT.PUT_LINE('Employee : ' ||
v_customer_name_cache(k).last_name);
 DBMS_OUTPUT.PUT_LINE('Number of projects : ' ||
v_customer_name_cache(k).Current_Projects);
 DBMS_OUTPUT.PUT_LINE('Average Band in department : ' ||
average_band(v_customer_name_cache(k).dept_code, v_customer_name_cache(k).acct_id));
 END LOOP;

 END DISPLAY_ACCOUNT_LIST;

END ACCOUNT_PACKAGE;
/

CREATE OR REPLACE FUNCTION COUNT_PROJECTS (p_empID IN employees.emp_ID%TYPE,
 o_acct_id OUT employees.acct_id%TYPE)
RETURN NUMBER AS
 /*
 ||--
 || DESCRIPTION: Function that counts the project based on the employeed id and also
 || returns information on total projects of the account to which employee
 || ID belongs
 || DEMO PURPOSE: Function with OUT parameter, FOR LOOP over cursor
 ||
 ||
 || EXAMPLE: SELECT COUNT_PROJECTS(1, acct_id) FROM DUAL;
 ||
 ||--
 */

-- variable declaration
 v_TotalProjects NUMBER:=0;
 v_AccountProjects NUMBER;

362 Oracle to DB2 Conversion Guide: Compatibility Made Easy

-- CURSOR declaration
 CURSOR c_DeptAccts IS
 SELECT dept_code, acct_id
 FROM EMPLOYEES
 WHERE emp_id = p_empID;

BEGIN
 FOR v_AccountRec IN c_DeptAccts LOOP
 o_acct_id:=v_AccountRec.acct_id;
 -- Determine the projects for this account.
 SELECT num_projects
 INTO v_AccountProjects
 FROM ACCOUNTS
 WHERE dept_code = v_AccountRec.dept_code
 AND acct_id = v_AccountRec.acct_id;

 -- Add it to the total so far.
 v_Totalprojects := v_Totalprojects + v_AccountProjects;
 END LOOP;
 -- different line for DB2 and Oracle
 RETURN v_Totalprojects;

END COUNT_PROJECTS;
/

CREATE OR REPLACE PROCEDURE ADD_NEW_EMPLOYEE (
 p_FirstName EMPLOYEES.first_name%TYPE,
 p_LastName EMPLOYEES.last_name%TYPE,
 p_EmpMgrId EMPLOYEES.emp_mgr_id%TYPE,
 p_DeptCode EMPLOYEES.dept_code%TYPE,
 p_Account EMPLOYEES.acct_id%TYPE,
 o_Employee OUT EMP_INFO_TYPE,
 p_CreateDate EMPLOYEES.create_date%TYPE DEFAULT SYSDATE,
 p_OfficeId EMPLOYEES.office_id%TYPE DEFAULT 2
) AS
 /*
 ||--
 || DESCRIPTION: Procedure to add a new employee
 ||
 ||
 || DEMO PURPOSE: Default values in the procedure definition, Regular loops,
 || sequence keywords like NEXTVAL and CURVAL
 || EXECUTE IMMEDIATE
 ||
 ||
 || EXAMPLE: EXEC ADD_NEW_EMPLOYEE('Max', "Trenton', 2, 1, 1, emp_info)
 ||
 ||--
 */
 Appendix E. Code samples 363

-- variable declaration
 v_EmployeeId EMPLOYEES.emp_id%TYPE :=1;
 v_EmployeeIdTemp EMPLOYEES.emp_id%TYPE;

-- cursor declaration
 CURSOR c_CheckEmployeeId IS
 SELECT 1
 FROM EMPLOYEES
 WHERE emp_id=v_EmployeeId;

 CURSOR c_get_employee IS
 SELECT emp_id, first_name, last_name, band
 FROM EMPLOYEES
 WHERE emp_id=v_EmployeeId;

BEGIN
 -- Find Next available employee id from the employee sequence
 LOOP
 SELECT employee_sequence.NEXTVAL INTO v_EmployeeId FROM DUAL;
 OPEN c_CheckEmployeeId;
 FETCH c_CheckEmployeeId INTO v_EmployeeIdTemp;
 EXIT WHEN c_CheckEmployeeId%NOTFOUND;
 CLOSE c_CheckEmployeeId;
 END LOOP;

 select employee_sequence.CURRVAL INTO v_EmployeeId FROM DUAL;

 EXECUTE IMMEDIATE 'INSERT INTO EMPLOYEES(emp_id, first_name, last_name, current_projects,
emp_mgr_id, dept_code, acct_id, office_id, band, create_date)
 VALUES (' || v_EmployeeId || ', UPPER(''' || p_FirstName || '''),
UPPER(''' || p_LastName || '''),
 0, '|| p_EmpMgrId || ',''' || p_DeptCode || ''', ' || p_Account || ',' ||
p_OfficeId || ', 1,''' || p_CreateDate || ''')';

 FOR x IN c_get_employee
 LOOP
 o_Employee:=EMP_INFO_TYPE(x.emp_id, x.first_name, x.last_name, x.band);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Employee record id ' || v_EmployeeId || ' was created successfully.');
 EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('Employee record was not created.');
 RAISE;

END ADD_NEW_EMPLOYEE;
/

CREATE OR REPLACE PROCEDURE GET_EMPLOYEE_RESUME (p_empID IN employees.emp_ID%TYPE,
364 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 o_resume OUT CLOB) AS
 /*
 ||--
 || DESCRIPTION: Builds employee's resume in the CLOB format based on the employee id
 ||
 ||
 || DEMO PURPOSE: DBMS_LOB built-in package
 ||
 ||
 || EXAMPLE: EXEC GET_EMPLOYEE_RESUME(1, clob_resume)
 ||
 ||--
 */
-- variable declaration
 v_education CLOB;
 v_work_experience CLOB;
 v_picture BLOB;
 v_position NUMBER:=1;
BEGIN
 DBMS_LOB.CREATETEMPORARY(o_resume, TRUE, DBMS_LOB.session);
 SELECT education, work_experience
 INTO v_education, v_work_experience
 FROM EMP_DETAILS
 WHERE emp_id=p_empID;
 DBMS_LOB.WRITE(o_resume, 7, v_position, 'Resume' || chr(10));
 v_position:=v_position+7;
 DBMS_LOB.WRITE(o_resume, 11, v_position, 'Education: ');
 v_position:=v_position+11;
 DBMS_LOB.APPEND(o_resume, v_education);
 v_position:=v_position+DBMS_LOB.GETLENGTH(v_education);
 DBMS_LOB.WRITE(o_resume, 12, v_position, 'Experience: ');
 v_position:=v_position+12;
 DBMS_LOB.APPEND(o_resume, v_work_experience);
 v_position:=v_position+DBMS_LOB.GETLENGTH(v_work_experience);

 EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('Problems while building the employee resume');
 RAISE;
END GET_EMPLOYEE_RESUME;
/

CREATE OR REPLACE PROCEDURE ASSIGN_EMPLOYEE_TO_NEW_ACCOUNT (
 p_EmployeeId IN EMPLOYEES.emp_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE,
 p_AcctId IN ACCOUNTS.acct_id%TYPE) AS

 /*
 ||--
 Appendix E. Code samples 365

 || DESCRIPTION: Re-assigns employee to a new account
 ||
 ||
 || DEMO PURPOSE: RAISE_APPLICATION_ERROR,
 ||
 ||
 || EXAMPLE: EXEC ASSIGN_EMPLOYEE_TO_NEW_ACCOUNT(47, 'A01', 1)
 ||
 ||--
 */
-- variable declaration
 v_CurrentEmployees NUMBER; -- Current number of employees assigned to account
 v_MaxEmployees NUMBER; -- Maximum number of employees assigned to account

BEGIN

 SELECT current_employees, max_employees
 INTO v_CurrentEmployees, v_MaxEmployees
 FROM ACCOUNTS
 WHERE acct_id = p_AcctId
 AND dept_code = p_DeptCode;

 --Make sure there is enough room for this additional employee
 IF v_CurrentEmployees = v_MaxEmployees THEN
 RAISE_APPLICATION_ERROR(-20000, 'Can''t assign more employees to ' || p_DeptCode || ' ' ||
p_AcctId);
 END IF;

 -- Add the employee to account
 UPDATE ACCOUNTS
 SET current_employees = current_employees-1
 WHERE acct_id=(SELECT acct_id
 FROM EMPLOYEES
 WHERE emp_id=p_EmployeeId);

 UPDATE EMPLOYEES
 SET acct_id = p_AcctId, dept_code = p_DeptCode
 WHERE emp_id=p_EmployeeId;

 UPDATE ACCOUNTS
 SET current_employees = current_employees+1
 WHERE acct_id=p_AcctId;

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 --Account information passed to this procedure doesn't exist. Raise an error
 RAISE_APPLICATION_ERROR(-20001, p_DeptCode || ' ' || p_AcctId || ' doesn''t exist!');

END ASSIGN_EMPLOYEE_TO_NEW_ACCOUNT;
366 Oracle to DB2 Conversion Guide: Compatibility Made Easy

/

CREATE OR REPLACE PROCEDURE EMPLOYEE_DYNAMIC_QUERY (
 o_RefCur OUT HELPER.RCT1,
 p_department1 IN EMPLOYEES.dept_code%TYPE DEFAULT NULL,
 p_department2 IN EMPLOYEES.dept_code%TYPE DEFAULT NULL) AS
 /*
 ||--
 || DESCRIPTION: Search routine that returns the list of employees in the form of
 || reference cursor based on the input of department code.
 ||
 || DEMO PURPOSE: Reference cursors, DBMS_SQL build-in package
 ||
 ||
 || EXAMPLE: EXEC EMPLOYEE_DYNAMIC_QUERY(ref_cursor, 1, 2)
 ||--
 */
-- variable declaration
 v_CursorID INTEGER;
 v_SelectStmt VARCHAR2(500);
 v_FirstName EMPLOYEES.first_name%TYPE;
 v_LastName EMPLOYEES.last_name%TYPE;
 v_DeptCode EMPLOYEES.dept_code%TYPE;
 v_Dummy INTEGER;

BEGIN

 -- Open the cursor for processing.
 v_CursorID := DBMS_SQL.OPEN_CURSOR;

 -- Create the query string.
 v_SelectStmt := 'SELECT first_name, last_name, dept_code
 FROM EMPLOYEES
 WHERE dept_code IN (:d1, :d2)
 ORDER BY last_name';

 -- Parse the query.
 DBMS_SQL.PARSE(v_CursorID, v_SelectStmt, DBMS_SQL.NATIVE);

 -- Bind the input variables.
 DBMS_SQL.BIND_VARIABLE(v_CursorID, ':d1', p_department1);
 DBMS_SQL.BIND_VARIABLE(v_CursorID, ':d2', p_department2);

 -- Define the select list items.
 DBMS_SQL.DEFINE_COLUMN(v_CursorID, 1, v_FirstName, 20);
 DBMS_SQL.DEFINE_COLUMN(v_CursorID, 2, v_LastName, 20);
 DBMS_SQL.DEFINE_COLUMN(v_CursorID, 3, v_DeptCode, 30);

 -- Execute the statement. We don't care about the return
 Appendix E. Code samples 367

 -- value, but we do need to declare a variable for it.
 v_Dummy := DBMS_SQL.EXECUTE(v_CursorID);

 -- This is the fetch loop.
 LOOP
 -- Fetch the rows into the buffer, and also check for the exit
 -- condition from the loop.
 v_Dummy:= DBMS_SQL.FETCH_ROWS(v_CursorID);
 IF v_Dummy = 0 THEN
 EXIT;
 END IF;

 -- Retrieve the rows from the buffer into PL/SQL variables.
 DBMS_SQL.COLUMN_VALUE(v_CursorID, 1, v_FirstName);
 DBMS_SQL.COLUMN_VALUE(v_CursorID, 2, v_LastName);
 DBMS_SQL.COLUMN_VALUE(v_CursorID, 3, v_DeptCode);

 -- Insert the fetched data into temp_table
 INSERT INTO TEMP_TABLE (char_col)
 VALUES (v_FirstName || ' ' || v_LastName || ' is a ' || v_DeptCode || ' department.');

 END LOOP;

 -- Close the cursor.
 DBMS_SQL.CLOSE_CURSOR(v_CursorID);
 OPEN o_RefCur FOR SELECT char_col FROM TEMP_TABLE;

EXCEPTION
 WHEN OTHERS THEN
 -- Close the cursor, then raise the error again.
 DBMS_SQL.CLOSE_CURSOR(v_CursorID);
 RAISE;
END EMPLOYEE_DYNAMIC_QUERY ;
/

CREATE OR REPLACE DIRECTORY mydir AS 'C:\temp'
/

CREATE OR REPLACE PROCEDURE SAVE_ORG_STRUCT_TO_FILE IS
/*
 ||--
 || DESCRIPTION: Stores the hierarchy of organization in the OS file
 ||
 ||
 || DEMO PURPOSE: UTL_FILE built-in package
 ||
 ||
 || EXAMPLE: EXEC SAVE_ORG_STRUCT_TO_FILE
 ||
368 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 ||--
 */
-- variable declaration
 v_filehandle UTL_FILE.FILE_TYPE;
 v_filename VARCHAR2(100) DEFAULT 'catalog.out';
 v_temp_line VARCHAR2(100);

 BEGIN

 v_filehandle := UTL_FILE.FOPEN('MYDIR',v_filename,'w');
 IF (UTL_FILE.IS_OPEN(v_filehandle) = FALSE) THEN
 DBMS_OUTPUT.PUT_LINE('Cannot open file');
 END IF;
 FOR i IN (SELECT org_level, full_name, department
 FROM ORGANIZATION_STRUCTURE)
 LOOP
 UTL_FILE.PUT_LINE(v_filehandle, 'Level: ' || i.org_level || ' ' || i.full_name || '
Department: ' || i.department);
 END LOOP;
 UTL_FILE.FCLOSE(v_filehandle);

 EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('Some problem with saving organization structure to file');

END SAVE_ORG_STRUCT_TO_FILE;
/

CREATE OR REPLACE PROCEDURE INSERT_CUSTOMER_IN_XML (cust_in IN VARCHAR2)
IS
 /*
 ||--
 || DESCRIPTION: This procedure selects the customer information stored in XML data
 || type and process it in a cursor loop.
 ||
 || DEMO PURPOSE: Procedure that utilizes the power of XML and Xquery to process XML
 || data. It demonstrates a comparison between DB2 and Oracle syntax.
 ||
 || EXAMPLE: EXEC Insert_Customer_in_XML
|| ('<customerinfo xmlns="http://posample.org" Cid="1000">

 || <name>Kathy Smith</name><addr country="Canada">
 || <street>5 Rosewood</street>
 || <city>Toronto</city><prov-state>Ontario</prov-state>
 || <pcode-zip>M6W 1E6</pcode-zip></addr>
 || <phone type="work">416-555-1358</phone></customerinfo>')
 ||--
 */

 v_cust_id PLS_INTEGER;
 Appendix E. Code samples 369

 v_city VARCHAR2(50);

 BEGIN

 SELECT customer_sequence.nextval INTO v_cust_id FROM DUAL;
 INSERT INTO CUSTOMERS VALUES (v_cust_id, XMLType(cust_in), SYSDATE);

 SELECT extract(cust_details_xml,'//customer-details/addr/city/text()').getStringVal()
 INTO v_city
 FROM CUSTOMERS
 WHERE cust_id=v_cust_id;
 DBMS_OUTPUT.PUT_LINE('Customers located in the same city: ');
 FOR i IN (SELECT extract(cust_details_xml,'//customer-details/name/text()').getStringVal() as
cust_name
 FROM CUSTOMERS
 WHERE existsNode(cust_details_xml,'//customer-details') = 1
 AND
extract(cust_details_xml,'//customer-details/addr/city/text()').getStringVal()=v_city
 AND cust_id<>v_cust_id)
 LOOP
 DBMS_OUTPUT.PUT_LINE(i.cust_name);
 END LOOP;
 EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('Problem with inserting XML data in customers table');
END Insert_Customer_in_XML;
/

E.2.3 Triggers and anonymous blocks

Example E-3 is the sample Oracle DDL statements for triggers and
anonymous blocks.

Example: E-3 Triggers and anonymous blocks Oracle DDL statements

CREATE OR REPLACE TRIGGER UPDATE_ACC_ON_NEW_EMPL
 /*
 ||--
 || DESCRIPTION: Trigger to update accounts and employees tables
 || upon addition of new employee
 ||
 || DEMO PURPOSE: Showcase PL/SQL support in triggers
 ||
 ||--
 */
 AFTER INSERT ON EMPLOYEES FOR EACH ROW
 BEGIN
 -- Add one to the number of employees in the project.
370 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 UPDATE ACCOUNTS
 SET current_employees = current_employees + 1
 WHERE dept_code = :new.dept_code
 AND acct_id = :new.acct_id;

END UPDATE_ACC_ON_NEW_EMPL;
/

CREATE OR REPLACE TRIGGER UPDATE_DEPARTMENTS
 /*
 ||---
 || DESCRIPTION: Trigger to keep the entries in the managers, employees, and accounts
 || tables in sync. When a record is inserted
 ||
 || DEMO PURPOSE: Showcase PL/SQL support in triggers
 ||
 ||---
 */
 AFTER INSERT OR DELETE OR UPDATE ON employees FOR EACH ROW
 BEGIN
 IF DELETING THEN
 UPDATE DEPARTMENTS
 SET total_projects=total_projects-:old.current_projects,
total_employees=total_employees-1
 WHERE dept_code=:old.dept_code;
 ELSIF INSERTING THEN
 UPDATE DEPARTMENTS
 SET total_projects=total_projects+:new.current_projects,
total_employees=total_employees+1
 WHERE dept_code=:new.dept_code;
 ELSIF UPDATING THEN
 UPDATE DEPARTMENTS
 SET total_projects=total_projects+:new.current_projects-:old.current_projects
 WHERE dept_code IN (:old.dept_code, :new.dept_code);
 END IF;

END UPDATE_DEPARTMENTS;
/

/*
 ||--
 || DESCRIPTION: Anonymous blocks that simulates the applications run
 ||
 ||
 || DEMO PURPOSE: Showcase Anonymous blocks and output to console
 ||
 ||--
 */
 Appendix E. Code samples 371

DECLARE
 v_emp_info EMP_INFO_TYPE;
 v_resume CLOB;
 temp_string VARCHAR2(4000);
 o_RefCur HELPER.RCT1;
BEGIN

 DBMS_OUTPUT.PUT_LINE('-------------------------------');
 DBMS_OUTPUT.PUT_LINE('----Account manipulation test--');
 ACCOUNT_PACKAGE.REMOVE_ACCOUNT(11, 'A00');
 ACCOUNT_PACKAGE.ADD_ACCOUNT(11, 'A00', 'QUALITY PROGRAMS', 10);
 ADD_NEW_EMPLOYEE('Max', 'Trenton', 2, 'A00', 1, v_emp_info);
 ASSIGN_EMPLOYEE_TO_NEW_ACCOUNT(v_emp_info.emp_id, 'A00', 11);
 ACCOUNT_PACKAGE.DISPLAY_ACCOUNT_LIST('A00', 11);

 DBMS_OUTPUT.PUT_LINE('-------------------------------');
 DBMS_OUTPUT.PUT_LINE('-----DBMS_LOB test-------------');
 GET_EMPLOYEE_RESUME(1, v_resume);
 DBMS_OUTPUT.PUT_LINE(v_resume);

 DBMS_OUTPUT.PUT_LINE('-------------------------------');
 DBMS_OUTPUT.PUT_LINE('-----UTL_FILE test-------------');
 SAVE_ORG_STRUCT_TO_FILE();

 DBMS_OUTPUT.PUT_LINE('-------------------------------');
 DBMS_OUTPUT.PUT_LINE('--DBMS_SQL and Ref cursor test-');
 EMPLOYEE_DYNAMIC_QUERY(o_RefCur,'A00', 'B01');
 FETCH o_RefCur INTO temp_string;
 DBMS_OUTPUT.PUT_LINE(temp_string);

 DBMS_OUTPUT.PUT_LINE('-------------------------------');
 DBMS_OUTPUT.PUT_LINE('----------XML test-------------');
 Insert_Customer_in_XML ('<?xml version="1.0"?><customer-details>
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W 1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
 </customer-details>');
 Insert_Customer_in_XML ('<?xml version="1.0"?><customer-details>
 <name>John Edward</name>
 <addr country="Canada">
 <street>15 Mintwood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>L6A 4F2</pcode-zip>
372 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 </addr>
 <phone type="work">416-112-2324</phone>
 </customer-details>');
END;
/

E.3 DB2 DDL statements

This section lists the sample DB2 DDL statements as a reference for possible
code modifications when you enable Oracle database objects for DB2.

E.3.1 Tables and views

Example E-4 is the sample DB2 DDL statements for tables and views. The “@”
symbol is used as the statement terminator.

Example: E-4 Tables and views DB2 DDL statements

CREATE SEQUENCE EMPLOYEE_SEQUENCE
 MINVALUE 1
 MAXVALUE 999999999999999999999999999
 INCREMENT BY 1
 START WITH 2
 CACHE 20 NOCYCLE NOORDER
@

CREATE SEQUENCE CUSTOMER_SEQUENCE
 MINVALUE 1
 MAXVALUE 999999999999999999999999999
 INCREMENT BY 1
 START WITH 2
 CACHE 20 NOCYCLE NOORDER
@

CREATE table DEPARTMENTS (
 "DEPT_CODE" CHAR(3) NOT NULL,
 "DEPT_NAME" VARCHAR2(30),
 "TOTAL_PROJECTS" NUMBER,
 "TOTAL_EMPLOYEES" NUMBER)
@

CREATE table ACCOUNTS
(

 Appendix E. Code samples 373

 "ACCT_ID" NUMBER(31) NOT NULL,
 "DEPT_CODE" CHAR(3) NOT NULL,
 "ACCT_DESC" VARCHAR2(2000),
 "MAX_EMPLOYEES" NUMBER(3),
 "CURRENT_EMPLOYEES" NUMBER(3),
 "NUM_PROJECTS" NUMBER(1),
 "CREATE_DATE" DATE DEFAULT SYSDATE,
 "CLOSED_DATE" DATE DEFAULT SYSDATE)
@

CREATE table CUSTOMERS
(
 "CUST_ID" NUMBER(5),
 "CUST_DETAILS_XML" XML ,
 "LAST_UPDATE_DATE" DATE)
@

CREATE table EMPLOYEES (
 "EMP_ID" NUMBER(5) NOT NULL,
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(20),
 "CURRENT_PROJECTS" NUMBER(3),
 "EMP_MGR_ID" NUMBER(5),
 "DEPT_CODE" CHAR(3) NOT NULL,
 "ACCT_ID" NUMBER(3) NOT NULL,
 "OFFICE_ID" NUMBER(5),
 "BAND" CHAR(1),
 "CREATE_DATE" TIMESTAMP(3) DEFAULT SYSDATE)
@

CREATE table EMP_DETAILS (
 "EMP_ID" NUMBER(5) NOT NULL,
 "EDUCATION" CLOB NOT NULL,
 "WORK_EXPERIENCE" CLOB NOT NULL,
 "PHOTO_FORMAT" VARCHAR2(10) NOT NULL,
 "PICTURE" BLOB)
@

CREATE table OFFICES (
 "OFFICE_ID" NUMBER(5) NOT NULL,
 "BUILDING" VARCHAR2(25),
 "NUMBER_SEATS" NUMBER(4),
 "DESCRIPTION" VARCHAR2(50))
@

374 Oracle to DB2 Conversion Guide: Compatibility Made Easy

COMMENT ON TABLE DEPARTMENTS IS 'Contains information about departments and their
names'
@

COMMENT ON TABLE ACCOUNTS IS 'Contains information about accounts and number of
projects'
@

COMMENT ON TABLE CUSTOMERS IS 'Contains information about customers in XML format'
@

COMMENT ON TABLE EMPLOYEES IS 'Contains information about employees'
@

COMMENT ON TABLE EMP_DETAILS IS 'Contains additional information on employees like
biography and picture'
@

COMMENT ON TABLE OFFICES IS 'Contains information about buildigs and offices'
@

ALTER TABLE DEPARTMENTS ADD CONSTRAINT PK_DEPT_CODE PRIMARY KEY ("DEPT_CODE")
@

ALTER TABLE ACCOUNTS ADD CONSTRAINT PK_ACCOUNTS PRIMARY KEY ("DEPT_CODE", "ACCT_ID"
)
@

ALTER TABLE EMPLOYEES ADD CONSTRAINT PK_EMPLOYEES PRIMARY KEY ("EMP_ID")
@

ALTER TABLE EMP_DETAILS ADD CONSTRAINT PK_EMP_DETAILS PRIMARY KEY ("EMP_ID")
@

ALTER TABLE OFFICES ADD CONSTRAINT PK_OFFICES PRIMARY KEY ("OFFICE_ID")
@

ALTER TABLE ACCOUNTS ADD CONSTRAINT FK_ACC_DEPT_CODE FOREIGN KEY ("DEPT_CODE")
REFERENCES DEPARTMENTS ("DEPT_CODE")
@

ALTER TABLE EMPLOYEES ADD CONSTRAINT FK_EMP_MGR_ID FOREIGN KEY ("EMP_MGR_ID")
REFERENCES EMPLOYEES ("EMP_ID")
@

 Appendix E. Code samples 375

ALTER TABLE EMPLOYEES ADD CONSTRAINT FK_EMP_OFFICE_ID FOREIGN KEY ("OFFICE_ID")
REFERENCES OFFICES ("OFFICE_ID")
@

ALTER TABLE EMPLOYEES ADD CONSTRAINT M_DEPT_CODE_ACCT_ID FOREIGN KEY ("DEPT_CODE",
"ACCT_ID") REFERENCES ACCOUNTS ("DEPT_CODE", "ACCT_ID")
@

ALTER TABLE EMP_DETAILS ADD CONSTRAINT FK_EMP_DETAILS_ID FOREIGN KEY ("EMP_ID")
REFERENCES EMPLOYEES ("EMP_ID") ON DELETE CASCADE
@

ALTER TABLE EMPLOYEES ADD CONSTRAINT BAND_VALIDATION CHECK (BAND IN ('1', '2', '3',
'4', '5'))
@

CREATE INDEX ACCT_DEPT_IND ON ACCOUNTS (DEPT_CODE)
@

CREATE INDEX EMP_SEARCH_IND ON EMPLOYEES(LAST_NAME, FIRST_NAME, DEPT_CODE)
@

CREATE INDEX customer_city_ind ON customers (cust_details_xml)
GENERATE KEYS USING XMLPATTERN '//customer-details/addr/city/text()'
AS SQL VARCHAR(50)
@

CREATE GLOBAL TEMPORARY TABLE TEMP_TABLE (
 "NUM_COL" NUMBER,
 "CHAR_COL" VARCHAR2(60))
@

CREATE OR REPLACE VIEW ORGANIZATION_STRUCTURE ("ORG_LEVEL", "FULL_NAME",
"DEPARTMENT") AS
 /*
 ||--
 || DESCRIPTION: Dispaly hierarcy of people in the organization structure
 ||
 ||
 || DEMO PURPOSE: Support of recursive SQL "START WITH ... CONNECT BY" along
|| with LEVEL keyword.

 || New built-in functions INITCAP and NVL.
 || New syntax for outer join - (+)
 ||--
 */
376 Oracle to DB2 Conversion Guide: Compatibility Made Easy

SELECT
 LEVEL as ORG_LEVEL,
 SUBSTR((LPAD(' ', 4 * LEVEL - 1) || INITCAP(e.last_name) || ', '

|| INITCAP(e.first_name)), 1, 40),
 NVL(d.dept_name, 'Uknown')
FROM
 EMPLOYEES e,
 DEPARTMENTS d
WHERE
 e.dept_code=d.dept_code(+)
START WITH emp_id = 1
CONNECT BY NOCYCLE PRIOR emp_id = emp_mgr_id
@

CREATE PUBLIC SYNONYM EMPLOYEE_SEQUENCE FOR SALES.EMPLOYEE_SEQUENCE
@

CREATE PUBLIC SYNONYM DEPARTMENTS FOR SALES.DEPARTMENTS
@
CREATE PUBLIC SYNONYM EMPLOYEES FOR SALES.EMPLOYEES
@
CREATE PUBLIC SYNONYM EMP_DETAILS FOR SALES.EMP_DETAILS
@
CREATE PUBLIC SYNONYM OFFICES FOR SALES.OFFICES
@

CREATE PUBLIC SYNONYM ORGANIZATION_STRUCTURE FOR SALES.ORGANIZATION_STRUCTURE
@

CREATE PUBLIC SYNONYM HELPER FOR SALES.HELPER
@
CREATE PUBLIC SYNONYM ACCOUNT_PACKAGE FOR SALES.ACCOUNT_PACKAGE
@

CREATE PUBLIC SYNONYM EMPLOYEE_DYNAMIC_QUERY FOR SALES.EMPLOYEE_DYNAMIC_QUERY
@

CREATE PUBLIC SYNONYM SAVE_ORG_TO_FILE FOR SALES.SAVE_ORG_TO_FILE
@

 Appendix E. Code samples 377

E.3.2 PL/SQL packages, procedures, and functions

Example E-5 is the sample DB2 DDL statements for PL/SQL packages,
procedures, and functions.

Example: E-5 DB2 DDL statements for PL/SQL packages, procedures, and functions

CREATE OR REPLACE TYPE EMP_INFO_TYPE AS OBJECT (
 EMP_ID NUMBER(5),
 FIRST_NAME VARCHAR2(20),
 LAST_NAME VARCHAR2(20),
 BAND CHAR(1))
@

CREATE OR REPLACE FUNCTION EMP_INFO_TYPE (
 P_EMP_ID NUMBER(5),
 P_FIRST_NAME VARCHAR2(20),
 P_LAST_NAME VARCHAR2(20),
 P_BAND CHAR(1))
RETURN EMP_INFO_TYPE
AS
 RET EMP_INFO_TYPE;
BEGIN
 RET.EMP_ID := P_EMP_ID;
 RET.FIRST_NAME := P_FIRST_NAME;
 RET.LAST_NAME := P_LAST_NAME;
 RET.BAND := P_BAND;
 RETURN RET;
END;
@

CREATE OR REPLACE PACKAGE HELPER AS
 /*
 ||---
 || DESCRIPTION: the purpose of this package is to create types that can be
 || used by stand-alone procedures and functions
 ||
 ||
 || DEMO PURPOSE: Definition of package for creating new types, Reference
 || Cursor, Record data type, Variable arrays

Terminology usage: The following example uses the at sign (@) as the
statement terminator to avoid conflicts with semicolons (;) that are used to
terminate individual statements within PL/SQL routines.
378 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 ||
 ||---
 */

-- type declaration
 TYPE rct1 IS REF CURSOR;
 TYPE emp_array_type IS VARRAY(10) OF EMP_INFO_TYPE;

END HELPER;
@

CREATE OR REPLACE PACKAGE ACCOUNT_PACKAGE AS
 /*
 ||---
 || DESCRIPTION: Account package contains the procedures to manage the accounts.
 || using the procedures in this package, users can add an account,
 || remove an account, provide account information in form of
 || associative array and display the account information using
 || server output.
 ||
 || DEMO PURPOSE: Package header declaration, anchor datatypes like %TYPE and
 || %ROWTYPE, definition of associative array
 || TYPE ... IS TABLE OF ... INDEX BY ...
 ||
 ||---
 */

-- type declaration
 TYPE customer_name_cache IS TABLE OF EMPLOYEES%ROWTYPE INDEX BY PLS_INTEGER;

-- PROCEDURE declaration
 PROCEDURE Add_Account(p_AccountId IN ACCOUNTS.acct_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE,
 p_AccountDesc IN ACCOUNTS.acct_desc%TYPE,
 p_MaxEmployees IN ACCOUNTS.max_employees%TYPE);

 PROCEDURE Remove_Account(p_AccountId IN ACCOUNTS.acct_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE);

 PROCEDURE Account_List(p_dept_code IN ACCOUNTS.dept_code%TYPE,
 p_acct_id IN ACCOUNTS.acct_id%TYPE,
 p_Employees_Name_Cache OUT Customer_Name_Cache);

 PROCEDURE Display_Account_List(p_dept_code IN ACCOUNTS.dept_code%TYPE,
 p_acct_id IN ACCOUNTS.acct_id%TYPE);
 Appendix E. Code samples 379

END ACCOUNT_PACKAGE;
@

CREATE OR REPLACE PACKAGE BODY ACCOUNT_PACKAGE AS

 PROCEDURE ADD_ACCOUNT(p_AccountId IN ACCOUNTS.acct_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE,
 p_AccountDesc IN ACCOUNTS.acct_desc%TYPE,
 p_MaxEmployees IN ACCOUNTS.max_employees%TYPE) IS
 /*
 ||---
 || DESCRIPTION: Add a new Employee into the specified Account
 ||
 ||
 || DEMO PURPOSE: predefined exceptions like DUP_VAL_ON_INDEX and OTHERS
 ||
 ||
 || EXAMPLE: EXEC ACCOUNT_PACKAGE.ADD_ACCOUNT(1, 1, 'Description', 10)
 ||
 ||---
 */

 BEGIN

 INSERT INTO ACCOUNTS (acct_id, dept_code, acct_desc, max_employees,
 current_employees, num_projects)
 VALUES (p_AccountId, p_DeptCode, p_AccountDesc, p_MaxEmployees, 0, 0);

 DBMS_OUTPUT.PUT_LINE('Account ' || p_AccountId || ' successfully created .');

 EXCEPTION
WHEN dup_val_on_index THEN

 DBMS_OUTPUT.PUT_LINE('Duplicate Account was rejected');
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 RAISE;

 END ADD_ACCOUNT;

 PROCEDURE REMOVE_ACCOUNT(p_AccountId IN ACCOUNTS.acct_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE) IS
 /*
 ||--
380 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 || DESCRIPTION: Removes the Account from database based on the account id
 || and department code
 ||
 ||
 || DEMO PURPOSE: Exception declaration
 ||
 ||
 || EXAMPLE: EXEC ACCOUNT_PACKAGE.REMOVE_ACCOUNT(1, 1)
 ||
 ||---
 */

-- exception declaration
 e_AccountNotRegistered EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_AccountNotRegistered, -20050);

 BEGIN
 DELETE FROM ACCOUNTS WHERE acct_id = p_AccountId AND dept_code = p_DeptCode;

 IF SQL%NOTFOUND THEN
 RAISE e_AccountNotRegistered;
 END IF;

 DBMS_OUTPUT.PUT_LINE('Account ' || p_AccountId || ' was successfuly removed.');

 EXCEPTION

WHEN e_AccountNotRegistered THEN
DBMS_OUTPUT.PUT_LINE('Account ' || p_AccountId || ' does not exist.');

WHEN others THEN
RAISE;

 END REMOVE_ACCOUNT;

 PROCEDURE ACCOUNT_LIST(p_dept_code IN ACCOUNTS.dept_code%TYPE,
 p_acct_id IN ACCOUNTS.acct_id%TYPE,
 p_Employees_Name_Cache OUT CUSTOMER_NAME_CACHE) IS
 /*
 ||---
 || DESCRIPTION: Stores all employees from particular department in the
 || associative array
 ||
 ||
 || DEMO PURPOSE: Cursor definition, Cursor iteration through LOOP, population
 || of associative array
 ||
 Appendix E. Code samples 381

 ||---
 */

-- variable declaration
 v_NumEmployees NUMBER := 1;

-- cursor declaration
 CURSOR c_RegisteredEmployees IS
 -- Local cursor to fetch the registered Employees.
 SELECT *
 FROM EMPLOYEES
 WHERE dept_code = p_dept_code
 AND acct_id = p_acct_id;

 BEGIN
 /* p_NumEmployees will be the table index. It will start at 0,
 and be incremented each time through the fetch loop.
 At the end of the loop, it will have the number of rows
 fetched, and therefore the number of rows returned in p_IDs. */

 OPEN c_RegisteredEmployees;

 LOOP
 FETCH c_RegisteredEmployees INTO p_Employees_Name_Cache(v_NumEmployees);
 EXIT WHEN c_RegisteredEmployees%NOTFOUND;
 v_NumEmployees := v_NumEmployees + 1;
 END LOOP;

 CLOSE c_RegisteredEmployees;

 END ACCOUNT_LIST;

 FUNCTION AVERAGE_BAND_28036 (p_Department IN EMPLOYEES.dept_code%TYPE,
 p_ACCT_ID IN EMPLOYEES.acct_id%TYPE)
 RETURN CHAR AS
 /*
 ||--
 || DESCRIPTION: Nested procedure to derive the average band of employees
 || in the department
 ||
 ||
 || DEMO PURPOSE: Cursor definition, cursor attributes %NOTFOUND and
 || %ROWCOUNT, DECODE built-in function, user defined
 || exception
382 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 ||
 ||---
 */

 -- variable declaration
 v_AverageBAND CHAR(1);
 v_NumericBand NUMBER;
 v_TotalBand NUMBER:=0;
 v_NumberEmployees NUMBER;

 -- CURSOR declaration
 CURSOR c_Employees IS
 SELECT band
 FROM EMPLOYEES
 WHERE dept_code = p_Department
 AND acct_id = p_ACCT_ID;

 BEGIN
 OPEN c_Employees;
 LOOP
 FETCH c_Employees INTO v_NumericBand;
 EXIT WHEN c_Employees%NOTFOUND;
 v_TotalBand := v_TotalBand + v_NumericBand;
 END LOOP;

 v_NumberEmployees:=c_Employees%ROWCOUNT;
 IF(v_NumberEmployees = 0) THEN
 RAISE_APPLICATION_ERROR(-20001, 'No employees exist for ' ||
 p_Department || ' ' || p_ACCT_ID);
 END IF;

 SELECT
 DECODE(
 ROUND(v_TotalBand/v_NumberEmployees),
 5, 'A', 4, 'B', 3, 'C', 2, 'D', 1, 'E')
 INTO v_AverageBand
 FROM DUAL;

 RETURN v_AverageBand;

 END AVERAGE_BAND_28036;

 PROCEDURE DISPLAY_ACCOUNT_LIST(p_dept_code IN ACCOUNTS.dept_code%TYPE,
 p_acct_id IN ACCOUNTS.acct_id%TYPE) IS
 /*
 Appendix E. Code samples 383

 ||---
 || DESCRIPTION: Displays the information about Employees and number of their
 || project assigned to specific account.
 ||
 || DEMO PURPOSE: Usage of associative arrays, DBMS_OUTPUT built-in package,
 || call to the procedure in the same package
 ||
 || EXAMPLE: EXEC ACCOUNT_PACKAGE.DISPLAY_ACCOUNT_LIST('A00', 1);
 ||
 ||---
 */
 -- variable declaration
 v_customer_name_cache CUSTOMER_NAME_CACHE;
 k NUMBER := 1;

 -- definition of the nested function
 BEGIN
 DBMS_OUTPUT.PUT_LINE('List of employees');
 DBMS_OUTPUT.PUT_LINE('----------------------------');
 account_list(p_dept_code, p_acct_id, v_customer_name_cache);

 FOR k IN 1..v_customer_name_cache.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE('Record id : ' || k);
 DBMS_OUTPUT.PUT_LINE('Employee : ' ||
 v_customer_name_cache(k).last_name);
 DBMS_OUTPUT.PUT_LINE('Number of projects : ' ||
 v_customer_name_cache(k).Current_Projects);
 DBMS_OUTPUT.PUT_LINE('Average Band in department : ' ||
 average_band_28036(
 v_customer_name_cache(k).dept_code,
 v_customer_name_cache(k).acct_id));
 END LOOP;

 END DISPLAY_ACCOUNT_LIST;

END ACCOUNT_PACKAGE;
@

CREATE OR REPLACE FUNCTION COUNT_PROJECTS (p_empID IN employees.emp_ID%TYPE,
 o_acct_id OUT employees.acct_id%TYPE)
RETURN NUMBER AS
 /*
 ||---
 || DESCRIPTION: Function that counts the project based on the employeed id
 || and also returns information on total projects of the
384 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 || account to which employee id belongs
 ||
 || DEMO PURPOSE: Function with OUT parameter, FOR LOOP over cursor
 ||
 ||
 || EXAMPLE: SELECT COUNT_PROJECTS(1, acct_id) FROM DUAL;
 ||
 ||---
 */

-- variable declaration
 v_TotalProjects NUMBER:=0;
 v_AccountProjects NUMBER;

-- CURSOR declaration
 CURSOR c_DeptAccts IS
 SELECT dept_code, acct_id
 FROM EMPLOYEES
 WHERE emp_id = p_empID;

BEGIN
 FOR v_AccountRec IN c_DeptAccts LOOP
 o_acct_id:=v_AccountRec.acct_id;
 -- Determine the projects for this account.
 SELECT num_projects
 INTO v_AccountProjects
 FROM ACCOUNTS
 WHERE dept_code = v_AccountRec.dept_code
 AND acct_id = v_AccountRec.acct_id;

 -- Add it to the total so far.
 v_Totalprojects := v_Totalprojects + v_AccountProjects;
 END LOOP;
 -- different line for DB2 and Oracle
 RETURN v_Totalprojects;

END COUNT_PROJECTS;
@

CREATE OR REPLACE PROCEDURE ADD_NEW_EMPLOYEE (
 p_FirstName EMPLOYEES.first_name%TYPE,
 p_LastName EMPLOYEES.last_name%TYPE,
 p_EmpMgrId EMPLOYEES.emp_mgr_id%TYPE,
 p_DeptCode EMPLOYEES.dept_code%TYPE,
 p_Account EMPLOYEES.acct_id%TYPE,
 Appendix E. Code samples 385

 o_Employee OUT EMP_INFO_TYPE,
 p_CreateDate EMPLOYEES.create_date%TYPE DEFAULT SYSDATE,
 p_OfficeId EMPLOYEES.office_id%TYPE DEFAULT 2
) AS
 /*
 ||---
 || DESCRIPTION: Procedure to add a new employee
 ||
 ||
 || DEMO PURPOSE: Default values in the procedure definition, Regular loops,
 || sequence keywords like NEXTVAL and CURVAL
 || EXECUTE IMMEDIATE
 ||
 ||
 || EXAMPLE: EXEC ADD_NEW_EMPLOYEE('Max', 'Trenton', 2, 1, 1, emp_info)
 ||
 ||---
 */

-- variable declaration
 v_EmployeeId EMPLOYEES.emp_id%TYPE :=1;
 v_EmployeeIdTemp EMPLOYEES.emp_id%TYPE;

-- cursor declaration
 CURSOR c_CheckEmployeeId IS
 SELECT 1
 FROM EMPLOYEES
 WHERE emp_id=v_EmployeeId;

 CURSOR c_get_employee IS
 SELECT emp_id, first_name, last_name, band
 FROM EMPLOYEES
 WHERE emp_id=v_EmployeeId;

BEGIN
 -- Find Next available employee id from the employee sequence
 LOOP
 SELECT employee_sequence.NEXTVAL INTO v_EmployeeId FROM DUAL;
 OPEN c_CheckEmployeeId;
 FETCH c_CheckEmployeeId INTO v_EmployeeIdTemp;
 EXIT WHEN c_CheckEmployeeId%NOTFOUND;
 CLOSE c_CheckEmployeeId;
 END LOOP;

 select employee_sequence.CURRVAL INTO v_EmployeeId FROM DUAL;
386 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 EXECUTE IMMEDIATE 'INSERT INTO EMPLOYEES ' ||
 '(emp_id, first_name, last_name, current_projects, emp_mgr_id, ' ||
 'dept_code, acct_id, office_id, band, create_date) VALUES (' ||
 v_EmployeeId || ', UPPER(''' || p_FirstName || '''), UPPER(''' ||
 p_LastName || '''), 0, '|| p_EmpMgrId || ',''' || p_DeptCode || ''', ' ||
 p_Account || ',' || p_OfficeId || ', 1,''' || p_CreateDate || ''')';

 FOR x IN c_get_employee
 LOOP
 o_Employee:=EMP_INFO_TYPE(x.emp_id, x.first_name, x.last_name, x.band);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE(
 'Employee record id ' || v_EmployeeId || ' was created successfully.');
 EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('Employee record was not created.');
 RAISE;

END ADD_NEW_EMPLOYEE;
@

CREATE OR REPLACE PROCEDURE GET_EMPLOYEE_RESUME
 (p_empID IN employees.emp_ID%TYPE,
 o_resume OUT CLOB) AS
 /*
 ||---
 || DESCRIPTION: Builds employee resume in the CLOB format based on the
 || employee id
 ||
 ||
 || DEMO PURPOSE: DBMS_LOB built-in package
 ||
 ||
 || EXAMPLE: EXEC GET_EMPLOYEE_RESUME(1, clob_resume)
 ||
 ||---
 */
-- variable declaration
 v_education CLOB;
 v_work_experience CLOB;
 v_picture BLOB;
 v_position NUMBER:=1;
BEGIN
 o_resume := empty_clob();
 Appendix E. Code samples 387

 SELECT education, work_experience
 INTO v_education, v_work_experience
 FROM EMP_DETAILS
 WHERE emp_id=p_empID;
 DBMS_LOB.WRITE_CLOB(o_resume, 7, v_position, 'Resume' || chr(10));
 v_position:=v_position+7;
 DBMS_LOB.WRITE_CLOB(o_resume, 11, v_position, 'Education: ');
 v_position:=v_position+11;
 DBMS_LOB.APPEND_CLOB(o_resume, v_education);
 v_position:=v_position+DBMS_LOB.GETLENGTH(v_education);
 DBMS_LOB.WRITE_CLOB(o_resume, 12, v_position, 'Experience: ');
 v_position:=v_position+12;
 DBMS_LOB.APPEND_CLOB(o_resume, v_work_experience);
 v_position:=v_position+DBMS_LOB.GETLENGTH(v_work_experience);

 EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('Problems while building the employee resume');
 RAISE;
END GET_EMPLOYEE_RESUME;
@

CREATE OR REPLACE PROCEDURE ASSIGN_EMPLOYEE_TO_NEW_ACCOUNT (
 p_EmployeeId IN EMPLOYEES.emp_id%TYPE,
 p_DeptCode IN ACCOUNTS.dept_code%TYPE,
 p_AcctId IN ACCOUNTS.acct_id%TYPE) AS

 /*
 ||---
 || DESCRIPTION: Re-assigns employee to a new account
 ||
 ||
 || DEMO PURPOSE: RAISE_APPLICATION_ERROR,
 ||
 ||
 || EXAMPLE: EXEC ASSIGN_EMPLOYEE_TO_NEW_ACCOUNT(47, 'A01', 1)
 ||
 ||---
 */
-- variable declaration
 v_CurrentEmployees NUMBER; -- Current no. of employees assigned to account
 v_MaxEmployees NUMBER; -- Maximum no. of employees assigned to account

BEGIN
388 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 SELECT current_employees, max_employees
 INTO v_CurrentEmployees, v_MaxEmployees
 FROM ACCOUNTS
 WHERE acct_id = p_AcctId
 AND dept_code = p_DeptCode;

 --Make sure there is enough room for this additional employee
 IF v_CurrentEmployees = v_MaxEmployees THEN
 RAISE_APPLICATION_ERROR(-20000, 'Can''t assign more employees to ' ||
 p_DeptCode || ' ' || p_AcctId);
 END IF;

 -- Add the employee to account
 UPDATE ACCOUNTS
 SET current_employees = current_employees-1
 WHERE acct_id=(SELECT acct_id
 FROM EMPLOYEES
 WHERE emp_id=p_EmployeeId);

 UPDATE EMPLOYEES
 SET acct_id = p_AcctId, dept_code = p_DeptCode
 WHERE emp_id=p_EmployeeId;

 UPDATE ACCOUNTS
 SET current_employees = current_employees+1
 WHERE acct_id=p_AcctId;

EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- Account information doesn't exist. Raise an error
 RAISE_APPLICATION_ERROR(-20001, p_DeptCode || ' ' || p_AcctId ||
 ' doesn''t exist!');

END ASSIGN_EMPLOYEE_TO_NEW_ACCOUNT;
@

CREATE OR REPLACE PROCEDURE EMPLOYEE_DYNAMIC_QUERY (
 o_RefCur OUT HELPER.RCT1,
 p_department1 IN EMPLOYEES.dept_code%TYPE DEFAULT NULL,
 p_department2 IN EMPLOYEES.dept_code%TYPE DEFAULT NULL) AS
 /*
 ||---
 || DESCRIPTION: Search routine that returns the list of employees in the
 || form of reference cursor based on the input of department
 || code.
 Appendix E. Code samples 389

 ||
 || DEMO PURPOSE: Reference cursors, DBMS_SQL build-in package
 ||
 ||
 || EXAMPLE: EXEC EMPLOYEE_DYNAMIC_QUERY(ref_cursor, 1, 2)
 ||---
 */
-- variable declaration
 v_CursorID INTEGER;
 v_SelectStmt VARCHAR2(500);
 v_FirstName EMPLOYEES.first_name%TYPE;
 v_LastName EMPLOYEES.last_name%TYPE;
 v_DeptCode EMPLOYEES.dept_code%TYPE;
 v_Dummy INTEGER;

BEGIN

 -- Open the cursor for processing.
 v_CursorID := DBMS_SQL.OPEN_CURSOR;

 -- Create the query string.
 v_SelectStmt := 'SELECT first_name, last_name, dept_code
 FROM EMPLOYEES
 WHERE dept_code IN (:d1, :d2)
 ORDER BY last_name';

 -- Parse the query.
 DBMS_SQL.PARSE(v_CursorID, v_SelectStmt, DBMS_SQL.NATIVE);

 -- Bind the input variables.
 DBMS_SQL.BIND_VARIABLE_CHAR(v_CursorID, ':d1', p_department1);
 DBMS_SQL.BIND_VARIABLE_CHAR(v_CursorID, ':d2', p_department2);

 -- Define the select list items.
 DBMS_SQL.DEFINE_COLUMN_VARCHAR(v_CursorID, 1, v_FirstName, 20);
 DBMS_SQL.DEFINE_COLUMN_VARCHAR(v_CursorID, 2, v_LastName, 20);
 DBMS_SQL.DEFINE_COLUMN_CHAR(v_CursorID, 3, v_DeptCode, 30);

 -- Execute the statement. We don't care about the return
 -- value, but we do need to declare a variable for it.
 v_Dummy := DBMS_SQL.EXECUTE(v_CursorID);

 -- This is the fetch loop.
 LOOP
 -- Fetch the rows into the buffer, and also check for the exit
390 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 -- condition from the loop.
 v_Dummy:= DBMS_SQL.FETCH_ROWS(v_CursorID);
 IF v_Dummy = 0 THEN
 EXIT;
 END IF;

 -- Retrieve the rows from the buffer into PL/SQL variables.
 DBMS_SQL.COLUMN_VALUE_VARCHAR(v_CursorID, 1, v_FirstName);
 DBMS_SQL.COLUMN_VALUE_VARCHAR(v_CursorID, 2, v_LastName);
 DBMS_SQL.COLUMN_VALUE_CHAR(v_CursorID, 3, v_DeptCode);

 -- Insert the fetched data into temp_table
 INSERT INTO TEMP_TABLE (char_col)
 VALUES (v_FirstName || ' ' || v_LastName || ' is a ' || v_DeptCode ||
 ' department.');

 END LOOP;

 -- Close the cursor.
 DBMS_SQL.CLOSE_CURSOR(v_CursorID);
 OPEN o_RefCur FOR SELECT char_col FROM TEMP_TABLE;

EXCEPTION
 WHEN OTHERS THEN
 -- Close the cursor, then raise the error again.
 DBMS_SQL.CLOSE_CURSOR(v_CursorID);
 RAISE;
END EMPLOYEE_DYNAMIC_QUERY ;
@

CALL UTL_DIR.CREATE_OR_REPLACE_DIRECTORY('MYDIR','C:\temp')
@

CREATE OR REPLACE PROCEDURE SAVE_ORG_STRUCT_TO_FILE IS
/*
 ||---
 || DESCRIPTION: Stores the hierarchy of organization in the OS file
 ||
 ||
 || DEMO PURPOSE: UTL_FILE built-in package
 ||
 ||
 || EXAMPLE: EXEC SAVE_ORG_STRUCT_TO_FILE
 ||
 ||---
 Appendix E. Code samples 391

 */
-- variable declaration
 v_filehandle UTL_FILE.FILE_TYPE;
 v_filename VARCHAR2(100) DEFAULT 'catalog.out';
 v_temp_line VARCHAR2(100);

 BEGIN

 v_filehandle := UTL_FILE.FOPEN('MYDIR',v_filename,'w');
 IF (UTL_FILE.IS_OPEN(v_filehandle) = FALSE) THEN
 DBMS_OUTPUT.PUT_LINE('Cannot open file');
 END IF;
 FOR i IN (SELECT org_level, full_name, department
 FROM ORGANIZATION_STRUCTURE)
 LOOP
 UTL_FILE.PUT_LINE(v_filehandle, 'Level: ' || i.org_level || ' ' ||
 i.full_name || ' Department: ' || i.department);
 END LOOP;
 UTL_FILE.FCLOSE(v_filehandle);

 EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('Error saving organization structure to file');

END SAVE_ORG_STRUCT_TO_FILE;
@

CREATE OR REPLACE PROCEDURE INSERT_CUSTOMER_IN_XML (cust_in IN VARCHAR2)
IS
 /*
 ||---
 || DESCRIPTION: This procedure selects the customer information stored in
 || XML data type and process it in a cursor loop.
 ||
 || DEMO PURPOSE: Procedure that utilizes the power of XML and Xquery to
 || process XML data. It demonstrates a comparison between DB2
 || and Oracle syntax.
 ||
 || EXAMPLE: EXEC Insert_Customer_in_XML (
392 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 || '<customerinfo xmlns="http://posample.org" Cid="1000">
 || <name>Kathy O.</name><addr country="Canada">
 || <street>5 Rosewood</street>
 || <city>Toronto</city><prov-state>Ontario</prov-state>
 || <pcode-zip>M6W 1E6</pcode-zip></addr>
 || <phone type="work">416-555-5555</phone></customerinfo>')

||---
--
 */

 v_cust_id PLS_INTEGER;
 v_city VARCHAR2(50);

 BEGIN

 SELECT customer_sequence.nextval INTO v_cust_id FROM DUAL;
 INSERT INTO CUSTOMERS VALUES (v_cust_id, cust_in, SYSDATE);

 SELECT XMLCAST(XMLQUERY('$customer/customer-details/addr/city'
 PASSING cust_details_xml AS "customer") AS VARCHAR(50))
 INTO v_city
 FROM CUSTOMERS
 WHERE cust_id=v_cust_id;
 DBMS_OUTPUT.PUT_LINE('Customers located in the same city: ');
 FOR i IN (SELECT x.cust_name
 FROM sales.CUSTOMERS c, XMLTABLE(

'$CUST_DETAILS_XML//customer-details[addr/city=$city]'
PASSING v_city as "city"
COLUMNS

 cust_name VARCHAR(128) PATH 'name'
) x
Where cust_id<>v_cust_id)

 LOOP
 DBMS_OUTPUT.PUT_LINE(i.cust_name);
 END LOOP;
 EXCEPTION
 WHEN others THEN
 DBMS_OUTPUT.PUT_LINE('Problem inserting XML data in customers table');
END Insert_Customer_in_XML;
@

 Appendix E. Code samples 393

E.3.3 Triggers

Example E-6 is the sample DB2 DDL statements for triggers

Example: E-6 DB2 DDL statements for triggers

CREATE OR REPLACE TRIGGER UPDATE_ACC_ON_NEW_EMPL
 /*
 ||---
 || DESCRIPTION: Trigger to update accounts and employees tables
 || upon addition of new employee
 ||
 || DEMO PURPOSE: Showcase PL/SQL support in triggers
 ||
 ||---
 */
 AFTER INSERT ON EMPLOYEES FOR EACH ROW
 BEGIN
 -- Add one to the number of employees in the project.
 UPDATE ACCOUNTS
 SET current_employees = current_employees + 1
 WHERE dept_code = :new.dept_code
 AND acct_id = :new.acct_id;

END UPDATE_ACC_ON_NEW_EMPL;
@

CREATE OR REPLACE TRIGGER UPDATE_DEPARTMENTS
 /*
 ||--
 || DESCRIPTION: Trigger to keep the entries in the managers, employees, and
 || accounts tables in sync.
 || When a record is inserted
 ||
 || DEMO PURPOSE: Showcase PL/SQL support in triggers
 ||
 ||--
 */
 AFTER INSERT OR DELETE OR UPDATE ON employees FOR EACH ROW
 BEGIN
 IF DELETING THEN
 UPDATE DEPARTMENTS
 SET total_projects=total_projects-:old.current_projects,
 total_employees=total_employees-1
 WHERE dept_code=:old.dept_code;
 ELSIF INSERTING THEN
 UPDATE DEPARTMENTS
 SET total_projects=total_projects+:new.current_projects,
 total_employees=total_employees+1
394 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 WHERE dept_code=:new.dept_code;
 ELSIF UPDATING THEN
 UPDATE DEPARTMENTS
 SET total_projects=total_projects+:new.current_projects-:old.current_projects
 WHERE dept_code IN (:old.dept_code, :new.dept_code);
 END IF;

END UPDATE_DEPARTMENTS;
@

E.4 Deep nested objects sample

Example E-7 shows the DB2 10.5 deep nested objects feature. This feature
handles a data structure whose XML equivalent view looks similar to
this example.

Example: E-7 Deep nested objects example

<?xml version="1.0" encoding="UTF-8"?>
<customer> <!-- Object, deep nested L0 -->

<info> <!-- Object, deep nested L1 -->
<name> <!-- Object L2 -->

<first_name>John</first_name> <!-- Leaf value -->
<last_name>S.</last_name>

</name>
<birth_date>1963-03-29</birth_date>

</info>
<adresses> <!-- Object Array, deep nested L1 -->

<address> <!-- Object, deep nested L2 -->
<phones> <!-- Object Array, deep nested L3 -->

<phone> <!-- Object L4 -->
<phone_provider>Bell</phone_provider>
<phone_number>000-111-2222</phone_number>

</phone>
<phone>

<phone_provider>Rogers</phone_provider>
<phone_number>000-111-2223</phone_number>

</phone>
</phones>
<country>Canada</country>
<country_div>Ontario</country_div>
<city>Toronto</city>
<street>Warden Ave.</street>
<number>8200</number>
 Appendix E. Code samples 395

<code>M2H-2P7</code>
<building_address> <!-- Object, deep nested L3 -->

<entry>A1</entry>
<floor>2</floor>
<apartment_number>120</apartment_number>

</building_address>
</address>

</adresses>
</customer>

This code is organized in a standard Eclipse project, and the samples are driven
by few use cases that are backed by their positive path JUnit test cases.

The sections that follow present the content of the files in the project. You can
use the actual Eclipse project as a starting point for experimenting with the deep
nested objects feature.

E.4.1 Creating a database

Example E-8 shows the create database script file location in the project and its
content.

Example: E-8 The create database SQL file and its content

file:DB2_10_deep_nested_objects_explorer/src/com/ibm/imte/db2/sample/de
epnested/ddl/database.create.ddl.sql:
create database testdb automatic storage yes pagesize 32 K;

E.4.2 Creating schema objects (default schema)

Example E-9 shows the create database script file location in the project and
its content.

Example: E-9 The create database script file and its content

file:DB2_10_deep_nested_objects_explorer/src/com/ibm/imte/db2/sample/de
epnested/ddl/schema_objects.create.ddl.sql:

CREATE OR REPLACE PACKAGE DNOBJ AS

-- modeling the "name" element of the XML schema
TYPE NAME_TYPE IS RECORD
(
 FIRST_NAMEVARCHAR2(32),
396 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 LAST_NAME VARCHAR2(32)
);

-- adding the default object constructor
FUNCTION NAME (
 FIRST_NAMEVARCHAR2(32),
 LAST_NAME VARCHAR2(32)
) RETURN NAME_TYPE;

-- modeling the "info" element of the XML schema
TYPE INFO_TYPE IS RECORD
(
 NAME NAME_TYPE, -- nesting a record type in another record type
 BIRTH_DATEDATE
);

-- adding the default object constructor
FUNCTION INFO (
 NAME NAME_TYPE,
 BIRTH_DATEDATE
) RETURN INFO_TYPE;

-- modeling the "phone" element of the XML schema
TYPE PHONE_TYPE IS RECORD
(
 PHONE_PROVIDERVARCHAR2(32),
 PHONE_NUMBERVARCHAR2(32)
);

-- adding the default object constructor
FUNCTION PHONE (
 PHONE_PROVIDERVARCHAR2(32),
 PHONE_NUMBERVARCHAR2(32)
) RETURN PHONE_TYPE;

-- modeling the "phones" element of the XML schema using an array of
-- phone records
TYPE PHONE_ARRAY_TYPE IS TABLE OF PHONE_TYPE INDEX BY INTEGER;

-- adding the default object constructor
FUNCTION PHONES (
 A1PHONE_TYPE
) RETURN PHONE_ARRAY_TYPE;
FUNCTION PHONES (
 A1PHONE_TYPE,
 Appendix E. Code samples 397

 A2PHONE_TYPE
) RETURN PHONE_ARRAY_TYPE;
FUNCTION PHONES (
 A1PHONE_TYPE,
 A2PHONE_TYPE,
 A3PHONE_TYPE
) RETURN PHONE_ARRAY_TYPE;

-- modeling the "buiding_address" element of the XML schema
TYPE BUILDING_ADDRESS_TYPE IS RECORD
(
 ENTRY VARCHAR2(8),
 FLOOR NUMBER(4),
 APARTMENT_NUMBERNUMBER(3)
);

-- adding the default object constructor
FUNCTION BUILDING_ADDRESS (
 ENTRY VARCHAR2(8),
 FLOOR NUMBER(4),
 APARTMENT_NUMBERNUMBER(3)
) RETURN BUILDING_ADDRESS_TYPE;

-- modeling the "address" element of the XML schema
TYPE ADDRESS_TYPE IS RECORD
(
 PHONES PHONE_ARRAY_TYPE,
 COUNTRYVARCHAR2(32),
 COUNTRY_DIVVARCHAR2(32),
 CITY VARCHAR2(32),
 STREET VARCHAR2(32),
 CODE VARCHAR2(32),
 BUILDING_ADDRESSBUILDING_ADDRESS_TYPE
);

-- adding the default object constructor
FUNCTION ADDRESS (
 PHONES PHONE_ARRAY_TYPE,
 COUNTRYVARCHAR2(32),
 COUNTRY_DIVVARCHAR2(32),
 CITY VARCHAR2(32),
 STREET VARCHAR2(32),
 CODE VARCHAR2(32),
 BUILDING_ADDRESSBUILDING_ADDRESS_TYPE
) RETURN ADDRESS_TYPE;
398 Oracle to DB2 Conversion Guide: Compatibility Made Easy

-- modeling the "adresses" element of the XML schema using an array of
-- adress records

TYPE ADDRESS_ARRAY_TYPE IS TABLE OF ADDRESS_TYPE INDEX BY INTEGER;
-- adding the default object constructor

FUNCTION ADDRESSES (
 A1ADDRESS_TYPE
) RETURN ADDRESS_ARRAY_TYPE;
FUNCTION ADDRESSES (
 A1ADDRESS_TYPE,
 A2ADDRESS_TYPE
) RETURN ADDRESS_ARRAY_TYPE;

-- modeling the "customer" element of the XML schema
TYPE CUSTOMER_TYPE IS RECORD
(
 KEY INTEGER,
 INFOINFO_TYPE,
 ADDRESSESADDRESS_ARRAY_TYPE
);

-- adding the default object constructor
FUNCTION CUSTOMER (
 KEY INTEGER,
 INFOINFO_TYPE,
 ADDRESSESADDRESS_ARRAY_TYPE
) RETURN CUSTOMER_TYPE;

-- provision to return multiple addresses in a single operation
TYPE CUSTOMER_ARRAY_TYPE IS TABLE OF CUSTOMER_TYPE INDEX BY INTEGER;

-- adding the default object constructor
FUNCTION CUSTOMERS (
 A1CUSTOMER_TYPE
) RETURN CUSTOMER_ARRAY_TYPE;
FUNCTION CUSTOMERS (
 A1CUSTOMER_TYPE,
 A2CUSTOMER_TYPE
) RETURN CUSTOMER_ARRAY_TYPE;

 PROCEDURE
GENERATE_CUSTOMER_SAMPLE_OBJECT_ARRAY(
 CUSTOMERS OUT DNOBJ.CUSTOMER_ARRAY_TYPE,
 SEED IN INTEGER,
 CUSTOMER_COUNT IN INTEGER,
 ADDRESS_MAX_COUNT IN INTEGER,
 Appendix E. Code samples 399

 PHONE_MA_COUNT IN INTEGER
);

END DEEP_NESTED_OBJECTS_SAMPLE;
/

CREATE OR REPLACE PACKAGE BODY DNOBJ AS

FUNCTION NAME (
 FIRST_NAMEVARCHAR2(32),
 LAST_NAME VARCHAR2(32)
) RETURN NAME_TYPE
IS

OBJ NAME_TYPE;
BEGIN

 OBJ.FIRST_NAME:= FIRST_NAME;
OBJ.LAST_NAME:= LAST_NAME;
RETURN OBJ;

END NAME;

FUNCTION INFO (
 NAME NAME_TYPE,
 BIRTH_DATEDATE
) RETURN INFO_TYPE
IS

OBJ INFO_TYPE;
BEGIN

 OBJ.NAME:= NAME;
OBJ.BIRTH_DATE:= BIRTH_DATE;
RETURN OBJ;

END INFO;

FUNCTION PHONE (
 PHONE_PROVIDERVARCHAR2(32),
 PHONE_NUMBERVARCHAR2(32)
) RETURN PHONE_TYPE
IS

OBJ PHONE_TYPE;
BEGIN

 OBJ.PHONE_PROVIDER:= PHONE_PROVIDER;
OBJ.PHONE_NUMBER:= PHONE_NUMBER;
RETURN OBJ;

END PHONE;

FUNCTION PHONES (
400 Oracle to DB2 Conversion Guide: Compatibility Made Easy

 A1PHONE_TYPE
) RETURN PHONE_ARRAY_TYPE
IS

OBJ PHONE_ARRAY_TYPE;
BEGIN

OBJ(1):=A1;
RETURN OBJ;

END PHONES;
FUNCTION PHONES (
 A1PHONE_TYPE,
 A2PHONE_TYPE
) RETURN PHONE_ARRAY_TYPE
IS

OBJ PHONE_ARRAY_TYPE;
BEGIN

OBJ(1):=A1;
OBJ(2):=A2;
RETURN OBJ;

END PHONES;
FUNCTION PHONES (
 A1PHONE_TYPE,
 A2PHONE_TYPE,
 A3PHONE_TYPE
) RETURN PHONE_ARRAY_TYPE
IS

OBJ PHONE_ARRAY_TYPE;
BEGIN

OBJ(1):=A1;
OBJ(2):=A2;
OBJ(3):=A3;
RETURN OBJ;

END PHONES;

FUNCTION BUILDING_ADDRESS (
 ENTRY VARCHAR2(8),
 P_FLOORNUMBER(4),
 APARTMENT_NUMBERNUMBER(3)
) RETURN BUILDING_ADDRESS_TYPE
IS

OBJ BUILDING_ADDRESS_TYPE;
BEGIN

OBJ.ENTRY:= ENTRY;
OBJ.FLOOR:= P_FLOOR;
OBJ.APARTMENT_NUMBER:= APARTMENT_NUMBER;
 Appendix E. Code samples 401

RETURN OBJ;
END BUILDING_ADDRESS;

FUNCTION ADDRESS (
 PHONES PHONE_ARRAY_TYPE,
 COUNTRYVARCHAR2(32),
 COUNTRY_DIVVARCHAR2(32),
 CITY VARCHAR2(32),
 STREET VARCHAR2(32),
 CODE VARCHAR2(32),
 BUILDING_ADDRESSBUILDING_ADDRESS_TYPE
) RETURN ADDRESS_TYPE
IS

OBJ ADDRESS_TYPE;
BEGIN

 OBJ.PHONES:= PHONES;
OBJ.COUNTRY:= COUNTRY;
OBJ.COUNTRY_DIV:= COUNTRY_DIV;
OBJ.CITY := CITY;
OBJ.STREET:= STREET;
OBJ.CODE := CODE;
OBJ.BUILDING_ADDRESS:= BUILDING_ADDRESS;
RETURN OBJ;

END ADDRESS;

FUNCTION ADDRESSES (
 A1ADDRESS_TYPE
) RETURN ADDRESS_ARRAY_TYPE
IS

OBJ ADDRESS_ARRAY_TYPE;
BEGIN

OBJ(1):=A1;
RETURN OBJ;

END ADDRESSES;
FUNCTION ADDRESSES (
 A1ADDRESS_TYPE,
 A2ADDRESS_TYPE
) RETURN ADDRESS_ARRAY_TYPE
IS

OBJ ADDRESS_ARRAY_TYPE;
BEGIN

OBJ(1):=A1;
OBJ(2):=A2;
RETURN OBJ;

END ADDRESSES;
402 Oracle to DB2 Conversion Guide: Compatibility Made Easy

FUNCTION CUSTOMER (
 KEY INTEGER,
 INFOINFO_TYPE,
 ADDRESSESADDRESS_ARRAY_TYPE
) RETURN CUSTOMER_TYPE
IS

OBJ CUSTOMER_TYPE;
BEGIN
 OBJ.KEY := KEY;

 OBJ.INFO:= INFO;
OBJ.ADDRESSES:= ADDRESSES;
RETURN OBJ;

END NAME;

FUNCTION CUSTOMERS (
 A1CUSTOMER_TYPE
) RETURN CUSTOMER_ARRAY_TYPE
IS

OBJ CUSTOMER_ARRAY_TYPE;
BEGIN

OBJ(1):=A1;
RETURN OBJ;

END CUSTOMERS;
FUNCTION CUSTOMERS (
 A1CUSTOMER_TYPE,
 A2CUSTOMER_TYPE
) RETURN CUSTOMER_ARRAY_TYPE
IS

OBJ CUSTOMER_ARRAY_TYPE;
BEGIN

OBJ(1):=A1;
OBJ(2):=A2;
RETURN OBJ;

END CUSTOMERS;

-- simple random generator or nested object tree
 PROCEDURE

GENERATE_CUSTOMER_SAMPLE_OBJECT_ARRAY(
 CUSTOMERS OUT CUSTOMER_ARRAY_TYPE,
 SEED IN INTEGER,
 CUSTOMER_COUNT IN INTEGER,
 ADDRESS_MAX_COUNT IN INTEGER,
 PHONE_MAX_COUNT IN INTEGER
) AS
 Appendix E. Code samples 403

BEGIN
 if SEED = 1
 and CUSTOMER_COUNT = 1
 and ADDRESS_MAX_COUNT = 1
 and PHONE_MAX_COUNT = 1
 then
 -- at this time we generate a simple constant deep nsted object
 -- tree to showcase the usagage of the function based factories
 -- to build nested trees which can be conpared with XML, JSON

etc
 CUSTOMERS :=
 CUSTOMERS(

CUSTOMER(
 0, -- key

 INFO(
 NAME('John','Smith'),
 '1967-02-23'
),
 ADDRESSES(
 ADDRESS(
 PHONES(
 PHONE(
 'Rogers',
 '000-111-2223'
)
), -- phone array
 'Canada', -- country
 'Ontario', -- country_div
 'Toronto', -- city
 'Warden Ave.', -- street
 'M2H-2P7', -- code
 BUILDING_ADDRESS(
 'A1', -- entry
 3, -- floor
 120 -- appartment
) -- building_ddress
) -- address
)-- address array

)
);

 else
 -- TODO: implement random generator
 customers := customers(cast(null as customer_type));
 end if;

 END;
404 Oracle to DB2 Conversion Guide: Compatibility Made Easy

END;
/

--

--
-- The second case is when standalone types are to be converted
-- The process is the same just that this tim there are no plsql
packages
--

--
-- modeling the "name" element of the XML schema
create or replace

TYPE NAME_TYPE AS ROW
(
 FIRST_NAMEVARCHAR2(32),
 LAST_NAME VARCHAR2(32)
)

/
create or replace

TYPE NAME_ARRAY_TYPE as NAME_TYPE ARRAY[]
/

-- modeling the "info" element of the XML schema
create or replace

TYPE INFO_TYPE AS ROW
(
 NAME NAME_TYPE, -- nesting a record type in another record type
 BIRTH_DATEDATE
)

/
create or replace

TYPE INFO_ARRAY_TYPE as INFO_TYPE ARRAY[]
/

-- modeling the "phone" element of the XML schema
create or replace

TYPE PHONE_TYPE AS ROW
(
 PHONE_PROVIDERVARCHAR2(32),
 PHONE_NUMBERVARCHAR2(32)
)

/

 Appendix E. Code samples 405

-- modeling the "phones" element of the XML schema using an array of
-- phone records

create or replace
TYPE PHONE_ARRAY_TYPE as PHONE_TYPE ARRAY[]

/

-- modeling the "buiding_address" element of the XML schema
create or replace

TYPE BUILDING_ADDRESS_TYPE AS ROW
(
 ENTRY VARCHAR2(8),
 FLOOR NUMBER(4),
 APARTMENT_NUMBERNUMBER(3)
)

/
create or replace

TYPE BUILDING_ADDRESS_ARRAY_TYPE as BUILDING_ADDRESS_TYPE ARRAY[]
/

-- modeling the "address" element of the XML schema
create or replace

TYPE ADDRESS_TYPE AS ROW
(
 PHONES PHONE_ARRAY_TYPE,
 COUNTRYVARCHAR2(32),
 COUNTRY_DIVVARCHAR2(32),
 CITY VARCHAR2(32),
 STREET VARCHAR2(32),
 CODE VARCHAR2(32),
 BUILDING_ADDRESSBUILDING_ADDRESS_TYPE
)

/
-- modeling the "adresses" element of the XML schema using an array of
-- adress records
create or replace

TYPE ADDRESS_ARRAY_TYPE AS ADDRESS_TYPE ARRAY[]
/

-- modeling the "customer" element of the XML schema
create or replace

TYPE CUSTOMER_TYPE AS ROW
(
 key int,
 INFOINFO_TYPE,
 ADDRESSESADDRESS_ARRAY_TYPE
406 Oracle to DB2 Conversion Guide: Compatibility Made Easy

)
/
-- provision to return multiple addresses in a single operation
create or replace

TYPE CUSTOMER_ARRAY_TYPE AS CUSTOMER_TYPE ARRAY[]
/

-- create supporting object instance function factories (constructors)
-- all those constructors can be automatically generated for the
existing
-- row types already defined in the database
-- the generator can also include the array types and their constructor
-- function counterparts
create or replace

FUNCTION NAME (
 FIRST_NAMEVARCHAR2(32),
 LAST_NAME VARCHAR2(32)
) RETURNS NAME_TYPE
LANGUAGE SQL
BEGIN
 declare OBJ NAME_TYPE;

 set OBJ.FIRST_NAME= FIRST_NAME;
set OBJ.LAST_NAME= LAST_NAME;
RETURN OBJ;

END
/

create or replace
FUNCTION INFO (
 NAME NAME_TYPE,
 BIRTH_DATEDATE
) RETURNS INFO_TYPE
LANGUAGE SQL
BEGIN

declare OBJ INFO_TYPE;
 set OBJ.NAME= NAME;

set OBJ.BIRTH_DATE= BIRTH_DATE;
RETURN OBJ;

END
/

create or replace
FUNCTION PHONE (
 PHONE_PROVIDERVARCHAR2(32),
 PHONE_NUMBERVARCHAR2(32)
 Appendix E. Code samples 407

) RETURNS PHONE_TYPE
LANGUAGE SQL
BEGIN

declare OBJ PHONE_TYPE;
 set OBJ.PHONE_PROVIDER= PHONE_PROVIDER;

set OBJ.PHONE_NUMBER= PHONE_NUMBER;
RETURN OBJ;

END
/

create or replace
FUNCTION PHONES (
 a1PHONE_TYPE
) RETURNS PHONE_ARRAY_TYPE
LANGUAGE SQL
BEGIN

declare OBJ PHONE_ARRAY_TYPE;
set OBJ[1] = a1;
RETURN OBJ;

END
/
create or replace

FUNCTION PHONES (
 a1PHONE_TYPE,
 a2PHONE_TYPE
) RETURNS PHONE_ARRAY_TYPE
LANGUAGE SQL
BEGIN

declare OBJ PHONE_ARRAY_TYPE;
set OBJ[1] = a1;
set OBJ[2] = a2;
RETURN OBJ;

END
/
create or replace

FUNCTION PHONES (
 a1PHONE_TYPE,
 a2PHONE_TYPE,
 a3PHONE_TYPE
) RETURNS PHONE_ARRAY_TYPE
LANGUAGE SQL
BEGIN

declare OBJ PHONE_ARRAY_TYPE;
set OBJ[1] = a1;
set OBJ[2] = a2;
408 Oracle to DB2 Conversion Guide: Compatibility Made Easy

set OBJ[3] = a3;
RETURN OBJ;

END
/
create or replace

FUNCTION BUILDING_ADDRESS (
 ENTRY VARCHAR2(8),
 P_FLOORNUMBER(4),
 APARTMENT_NUMBERNUMBER(3)
) RETURNS BUILDING_ADDRESS_TYPE
LANGUAGE SQL
BEGIN

declare OBJ BUILDING_ADDRESS_TYPE;
set OBJ.ENTRY = ENTRY;
set OBJ.FLOOR = P_FLOOR;
set OBJ.APARTMENT_NUMBER = APARTMENT_NUMBER;
RETURN OBJ;

END
/

create or replace
FUNCTION ADDRESS (
 PHONES PHONE_ARRAY_TYPE,
 COUNTRYVARCHAR2(32),
 COUNTRY_DIVVARCHAR2(32),
 CITY VARCHAR2(32),
 STREET VARCHAR2(32),
 CODE VARCHAR2(32),
 BUILDING_ADDRESSBUILDING_ADDRESS_TYPE
) RETURNS ADDRESS_TYPE
LANGUAGE SQL
BEGIN

declare OBJ ADDRESS_TYPE;
 set OBJ.PHONES = PHONES;

set OBJ.COUNTRY = COUNTRY;
set OBJ.COUNTRY_DIV = COUNTRY_DIV;
set OBJ.CITY = CITY;
set OBJ.STREET = STREET;
set OBJ.CODE = CODE;
set OBJ.BUILDING_ADDRESS = BUILDING_ADDRESS;
RETURN OBJ;

END
/
create or replace

FUNCTION ADDRESSES (
 Appendix E. Code samples 409

 a1ADDRESS_TYPE
) RETURNS ADDRESS_ARRAY_TYPE
LANGUAGE SQL
BEGIN

declare OBJ ADDRESS_ARRAY_TYPE;
set OBJ[1] = a1;
RETURN OBJ;

END
/
create or replace

FUNCTION ADDRESSES (
 a1ADDRESS_TYPE,
 a2ADDRESS_TYPE
) RETURNS ADDRESS_ARRAY_TYPE
LANGUAGE SQL
BEGIN

declare OBJ ADDRESS_ARRAY_TYPE;
set OBJ[1] = a1;
set OBJ[1] = a2;
RETURN OBJ;

END
/

create or replace
FUNCTION CUSTOMER (
 KEY INT,
 INFOINFO_TYPE,
 ADDRESSESADDRESS_ARRAY_TYPE
) RETURNS CUSTOMER_TYPE
LANGUAGE SQL
BEGIN

declare OBJ CUSTOMER_TYPE;
set OBJ.KEY = KEY;

 set OBJ.INFO = INFO;
set OBJ.ADDRESSES= ADDRESSES;
RETURN OBJ;

END
/
create or replace

FUNCTION CUSTOMERS (
 a1CUSTOMER_TYPE
) RETURNS CUSTOMER_ARRAY_TYPE
LANGUAGE SQL
BEGIN

declare OBJ CUSTOMER_ARRAY_TYPE;
410 Oracle to DB2 Conversion Guide: Compatibility Made Easy

set OBJ[1] = a1;
RETURN OBJ;

END
/
create or replace

FUNCTION CUSTOMERS (
 a1CUSTOMER_TYPE,
 a2CUSTOMER_TYPE
) RETURNS CUSTOMER_ARRAY_TYPE
LANGUAGE SQL
BEGIN

declare OBJ CUSTOMER_ARRAY_TYPE;
set OBJ[1] = a1;
set OBJ[2] = a2;
RETURN OBJ;

END
/
create or replace

FUNCTION CUSTOMERS (
 a1CUSTOMER_TYPE,
 a2CUSTOMER_TYPE,
 a3CUSTOMER_TYPE
) RETURNS CUSTOMER_ARRAY_TYPE
LANGUAGE SQL
BEGIN

declare OBJ CUSTOMER_ARRAY_TYPE;
set OBJ[1] = a1;
set OBJ[2] = a2;
set OBJ[3] = a3;
RETURN OBJ;

END
/

-- simple random generator or nested object tree
CREATE OR REPLACE
PROCEDURE

GENERATE_CUSTOMER_SAMPLE_OBJECT_ARRAY(
 CUSTOMERS OUT CUSTOMER_ARRAY_TYPE,
 SEED IN INTEGER,
 CUSTOMER_COUNT IN INTEGER,
 ADDRESS_MAX_COUNT IN INTEGER,
 PHONE_MAX_COUNT IN INTEGER
) AS

BEGIN
 Appendix E. Code samples 411

 if SEED = 1
 and CUSTOMER_COUNT = 1
 and ADDRESS_MAX_COUNT = 1
 and PHONE_MAX_COUNT = 1
 then

 CUSTOMERS :=
 CUSTOMERS(

CUSTOMER(
 0,-- key

 INFO(
 NAME('John','Smith'),
 '1967-02-23'
),
 ADDRESSES(
 ADDRESS(
 PHONES(
 PHONE(
 'Rogers',
 '000-111-2223'
)
), -- phone array
 'Canada', -- country
 'Ontario', -- country_div
 'Toronto', -- city
 'Warden Ave.', -- street
 'M2H-2P7', -- code
 BUILDING_ADDRESS(
 'A1', -- entry
 3, -- floor
 120 -- appartment
) -- building_ddress
) -- address
)-- address array

)
);

 else
 -- TODO: implement random generator
 CUSTOMERS := customers(null);
 end if;

 END;
/

412 Oracle to DB2 Conversion Guide: Compatibility Made Easy

E.4.3 JUnit tests (class file excerpt that includes only relevant
information for the printed book)

Example E-10 shows the JUnit test case that runs the deep nested objects
function at the client side. The test code provides setup and tear down logic and
the following test cases:

� testReadNestedObjectPackage
� testReadNestedObjectStandalone

Both tests use stored procedures that generate pseudo-random deep nested
structures. These structures exercise object nesting procedures that use PL/SQL
stored procedures (testReadNestedObjectPackage) and native SQL PL
procedures (testReadNestedObjectStandalone). The test logic calls the stored
procedures and then converts the result in a textual format to be easier to read.
The test logic uses an expected string constant as a way to validate the test
result (string compare). The test case is derived from a TestBase class that
encapsulates all the common logic. The test case can be reused by the reader to
quickly build his own tests to exercise various scenarios with the database.

Example: E-10 The Java and JDBC JUnit test case file location and content

file:DB2_10_deep_nested_objects_explorer/src/com/ibm/imte/db2/sample/de
epnested/ReadNestedObjectTest.java
public class ReadNestedObjectTest extends TestBase {

@Override
protected void setUp() throws Exception {

assertEquals(
0,

create_test_initial_state("com/ibm/imte/db2/sample/deepnested/ddl/schem
a_objects.create.ddl.sql"));

}

@Override
protected void tearDown() throws Exception {

revert_test_state("com/ibm/imte/db2/sample/deepnested/ddl/schema_object
s.drop.ddl.sql");

closeConnection();
}

public void testReadNestedObjectPackage() throws SQLException,
ClassNotFoundException {

Connection con = getConnection();
 Appendix E. Code samples 413

CallableStatement cstmt = null;

try {
cstmt = con

.prepareCall("CALL
dnobj.generate_customer_sample_object_array(?,?,?,?,?)");

cstmt.registerOutParameter(1, java.sql.Types.ARRAY);
cstmt.setInt(2, 1);// using same seed to keep the test happy

:)
cstmt.setInt(3, 1);
cstmt.setInt(4, 1);
cstmt.setInt(5, 1);

cstmt.execute();

// simply dump of the received data tree by walking
// the tree down for any "A" array or "S" structure
// entity detected, leaf field discrimination is positional
String result = sqlObjectToText("customers->",

cstmt.getArray(1));

// log the current result to be used in case of failure
logInfo("Result\n" + result);

// verify by comparing to the expected value
String expected = "customers->A[0]S[0]=0\n"

+ "customers->A[0]S[1]S[0]S[0]=John\n"
+ "customers->A[0]S[1]S[0]S[1]=Smith\n"
+ "customers->A[0]S[1]S[1]=1967-02-23 00:00:00.0\n"
+ "customers->A[0]S[2]A[0]S[0]A[0]S[0]=Rogers\n"
+ "customers->A[0]S[2]A[0]S[0]A[0]S[1]=000-111-2223\n"
+ "customers->A[0]S[2]A[0]S[1]=Canada\n"
+ "customers->A[0]S[2]A[0]S[2]=Ontario\n"
+ "customers->A[0]S[2]A[0]S[3]=Toronto\n"
+ "customers->A[0]S[2]A[0]S[4]=Warden Ave.\n"
+ "customers->A[0]S[2]A[0]S[5]=M2H-2P7\n"
+ "customers->A[0]S[2]A[0]S[6]S[0]=A1\n"
+ "customers->A[0]S[2]A[0]S[6]S[1]=3\n"
+ "customers->A[0]S[2]A[0]S[6]S[2]=120\n";

logInfo("Expected\n" + expected);
assertEquals(expected, result);

} finally {
if (cstmt != null) {

cstmt.close();
414 Oracle to DB2 Conversion Guide: Compatibility Made Easy

}
}

}

public void testReadNestedObjectStandalone() throws SQLException,
ClassNotFoundException {

Connection con = getConnection();
CallableStatement cstmt = null;
try {

cstmt = con
.prepareCall("CALL

generate_customer_sample_object_array(?,?,?,?,?)");

cstmt.registerOutParameter(1, java.sql.Types.ARRAY);
cstmt.setInt(2, 1);// using same seed for random to keep the

test
// happy :)
cstmt.setInt(3, 1);
cstmt.setInt(4, 1);
cstmt.setInt(5, 1);

cstmt.execute();

// simply dump of the received data tree by walking
// the tree down for any "A" array or "S" structure
// entity detected, leaf field discrimination is positional
String result = sqlObjectToText("customers->",

cstmt.getArray(1));

// log the current result to be used in case of failure
logInfo("Result\n" + result);

// verify by comparing to the expected value
String expected = "customers->A[0]S[0]=0\n"

+ "customers->A[0]S[1]S[0]S[0]=John\n"
+ "customers->A[0]S[1]S[0]S[1]=Smith\n"
+ "customers->A[0]S[1]S[1]=1967-02-23 00:00:00.0\n"
+ "customers->A[0]S[2]A[0]S[0]A[0]S[0]=Rogers\n"
+ "customers->A[0]S[2]A[0]S[0]A[0]S[1]=000-111-2223\n"
+ "customers->A[0]S[2]A[0]S[1]=Canada\n"
+ "customers->A[0]S[2]A[0]S[2]=Ontario\n"
+ "customers->A[0]S[2]A[0]S[3]=Toronto\n"
+ "customers->A[0]S[2]A[0]S[4]=Warden Ave.\n"
+ "customers->A[0]S[2]A[0]S[5]=M2H-2P7\n"
+ "customers->A[0]S[2]A[0]S[6]S[0]=A1\n"
 Appendix E. Code samples 415

+ "customers->A[0]S[2]A[0]S[6]S[1]=3\n"
+ "customers->A[0]S[2]A[0]S[6]S[2]=120\n";

logInfo("Expected\n" + expected);
assertEquals(expected, result);

} finally {
if (cstmt != null) {

cstmt.close();
}

}
}

}

file:DB2_10_deep_nested_objects_explorer/src/com/ibm/imte/TestBase.java

public class TestBase extends TestCase {

public int create_test_initial_state(String id) throws SQLException,
IOException, ClassNotFoundException {

// id is the path from where we load all the DDL definitions and
initial

// table data
// in order to reproduce a given database state
return execBatch(getConnection(), id, getLogger());

}

public int revert_test_state(String id) throws SQLException,
IOException,

ClassNotFoundException {
return execBatch(getConnection(), id, getLogger());

}

public String sqlObjectToText(String name, Object obj) {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
PrintStream out = new PrintStream(bos);

if (obj instanceof java.sql.Array) {
try {

Object[] a = (Object[]) ((Array) obj).getArray();
for (int i = 0; i < a.length; ++i) {

out.print(sqlObjectToText(name + "A[" + i + "]", a[i]));
}

} catch (SQLException e) {
out.println(name + "Array:-exception->" + e.getMessage());

}

416 Oracle to DB2 Conversion Guide: Compatibility Made Easy

} else if (obj instanceof java.sql.Struct) {
Struct a = (Struct) obj;
try {

Object[] attrs = a.getAttributes();
for (int i = 0; i < attrs.length; ++i) {

out.print(sqlObjectToText(name + "S[" + i + "]",
attrs[i]));

}
} catch (SQLException e) {

out.println(name + "struct:-exception->" + e.getMessage());
}

} else {
out.println(name + "=" + obj);

}
out.flush();
return bos.toString();

}

public Logger getLogger(String name, String log_file) {
Logger logger = Logger.getLogger(name);
if (log_file != null) {

try {
logger.addHandler(new FileHandler(log_file));

} catch (IOException e) {
}
logger.setLevel(Level.ALL);

}
return logger;

}

boolean trace;
String database = "testdb";
String host = "localhost";
String port = "50000";
String user = "db2inst1";
String password = "password";
String trace_level = "0";
String trace_file = "jdbc.trace.log";
String trace_dir = ".";
String trace_append = "true";

Properties env;

Properties getTestEnv() {
 Appendix E. Code samples 417

if (env == null) {
env = new Properties();
try {

InputStream fin = new FileInputStream("env.properties");
env.load(fin);
fin.close();

} catch (FileNotFoundException e) {
logger.info("No env.properties in cwd, using default");

} catch (IOException e) {
logger

.info("Unable to access env.properties in cwd, using
default");

}
if (!env.containsKey("db2.host")) {

env.setProperty("db2.host", host);
}
if (!env.containsKey("db2.port")) {

env.setProperty("db2.port", port);
}
if (!env.containsKey("db2.db")) {

env.setProperty("db2.db", database);
}
if (!env.containsKey("db2.user")) {

env.setProperty("db2.user", user);
}
if (!env.containsKey("db2.password")) {

env.setProperty("db2.password", password);
}
if (!env.containsKey("db2.traceLevel")) {

env.setProperty("db2.traceLevel", trace_level);
}
if (!env.containsKey("db2.traceFile")) {

env.setProperty("db2.traceFile", trace_file);
}
if (!env.containsKey("db2.traceDirectory")) {

env.setProperty("db2.traceDirectory", trace_dir);
}
if (!env.containsKey("db2.traceFileAppend")) {

env.setProperty("db2.traceFileAppend", trace_append);
}

}
return env;

}

private String getConnectionSting() {
418 Oracle to DB2 Conversion Guide: Compatibility Made Easy

getTestEnv();
String cstr = "jdbc:db2://"

+ env.getProperty("db2.host")
+ ":"
+ env.getProperty("db2.port")
+ "/"
+ env.getProperty("db2.db")
+ ":retrieveMessagesFromServerOnGetMessage=true;"
+ (env.getProperty("db2.traceLevel").equalsIgnoreCase("0")

? ""
: ("traceLevel=" + env.getProperty("db2.traceLevel")

+ ";traceFile="
+ env.getProperty("db2.traceFile")
+ ";traceDirectory="
+ env.getProperty("db2.traceDirectory")
+ ";traceFileAppend=" + env
.getProperty("db2.traceFileAppend")));

return cstr;
}

private Logger logger;

public Logger getLogger() {
if (logger == null) {

logger = getLogger(this.getClass().getCanonicalName(), this
.getClass().getCanonicalName()
+ ".log");

}
return logger;

}

public void logInfo(String msg) {
if (logger == null) {

logger = getLogger();
}
logger.info(msg);

}

public void log(Level level, String msg) {
if (logger == null) {

logger = getLogger(this.getClass().getCanonicalName(), this
.getClass().getCanonicalName()
+ ".log");

}

 Appendix E. Code samples 419

logger.log(level, msg);
}

DatabaseMetaData dbm;
Connection con;

protected Connection getConnection() throws SQLException,
ClassNotFoundException {

if (con == null) {
logInfo("Loading DB2 JCC 4 driver");
Class.forName("com.ibm.db2.jcc.DB2Driver");
logInfo("Connecting to the DB2 with user:" + user);

con = DriverManager.getConnection(getConnectionSting(), env
.getProperty("db2.user"),

env.getProperty("db2.password"));
logInfo("Connected");
con.setAutoCommit(true);
// dbm=con.getMetaData();

}

return con;
}

protected void closeConnection() {
if (con != null) {

try {
con.close();

} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
con = null;

}
}

public boolean canReachDBServer() {
try {

getTestEnv();
Socket sk = new Socket(env.getProperty("db2.host"), Integer

.parseInt(env.getProperty("db2.port")));
sk.close();
return true;

} catch (NumberFormatException e) {
420 Oracle to DB2 Conversion Guide: Compatibility Made Easy

logInfo("Server port number exception:" + port);
} catch (UnknownHostException e) {

logInfo("Server address is unknon:" + host);
} catch (IOException e) {

logInfo("Server connect IO exception:" + e);
// e.printStackTrace();

}
return false;

}

public boolean canConnectToDatabase() {
try {

getConnection();
closeConnection();
return true;

} catch (SQLException e) {
logInfo("Unable to connect to the database host:"

+ getConnectionSting() + " user:"
+ env.getProperty("db2.user") + " error:" +

e.getMessage());
} catch (ClassNotFoundException e) {

logInfo("DB2 JDBC driver class not found
(com.ibm.db2.jcc.DB2Driver) chck classpath");

}
return false;

}

public static void resultSetToCSV(ResultSet rs, PrintStream out)
throws SQLException {

if (rs == null) {
out.println("#null result set");
return;

}
ResultSetMetaData rsm = rs.getMetaData();
int ncols = rsm.getColumnCount();

out.print("#");
for (int i = 0; i < ncols; i++) {

out.print(rsm.getColumnName(i + 1));
if (i < (ncols - 1)) {

out.print(",");
}

}
out.println();
String value;
 Appendix E. Code samples 421

while (rs.next()) {
for (int i = 0; i < ncols; i++) {

value = rs.getString(i + 1);
if (value == null) {

value = "NULL";
} else {

if (value.indexOf(',') >= 0 || value.indexOf('"') >= 0)
{

value = '"' + value.replace("\"", "\\\"") + '"';
}

}
out.print(value);
if (i < (ncols - 1)) {

out.print(",");
}

}
out.println();

}
out.flush();

}

public static String resultSetToCSV(ResultSet rs) throws
SQLException {

ByteArrayOutputStream bos = new ByteArrayOutputStream();
PrintStream out = new PrintStream(bos);
resultSetToCSV(rs, out);
return bos.toString();

}

public static List<String> loadStatements(InputStream in, String
delim)

throws IOException {
List<String> stmts = new ArrayList<String>();
BufferedReader rd = new BufferedReader(new

InputStreamReader(in));
String line, stmt;
StringBuilder sb = new StringBuilder();

do {
line = rd.readLine();
if (line == null) {

break;
}
if (line.trim().equalsIgnoreCase(delim)) {

stmt = sb.toString().trim();
422 Oracle to DB2 Conversion Guide: Compatibility Made Easy

if (stmt.length() > 0) {
stmts.add(stmt);
sb = new StringBuilder();

}
} else {

sb.append(line);
sb.append("\n");

}
} while (line != null);
return stmts;

}

public static int execBatch(List<String> stmts, Connection con,
Logger logger) throws SQLException {

Statement st = con.createStatement();
int err_cnt = 0;
try {

for (Iterator<String> iterator = stmts.iterator(); iterator
.hasNext();) {

String stmt = (String) iterator.next();
logger.info(stmt);
try {

st.execute(stmt);
logger.info("Success");

} catch (SQLException e) {
++err_cnt;
logger.info("Exec error:" + e.getMessage());

}
}

} finally {
con.commit();

}
return err_cnt;

}

public static int execBatch(Connection con, String resource_id,
Logger logger) throws SQLException, IOException {

return execBatch(

loadStatements(Thread.currentThread().getContextClassLoader()
.getResourceAsStream(resource_id), "/"), con,

logger);
}

}

 Appendix E. Code samples 423

E.4.4 Cleaning up

The project provides an optional SQL batch file that selectively removes all the
objects that are created by the setup phase. For convenience, a pseudo-test
case provides a simple way to run it from inside the Eclipse Env (Example E-11).

Example: E-11 The selective schema cleanup logic

file:DB2_10_deep_nested_objects_explorer/src/com/ibm/imte/db2/sample/de
epnested/TestEnvCleanup.java

public class TestEnvCleanup extends TestBase {

@Override
protected void tearDown() throws Exception {

closeConnection();
}

public void testEnvCleanup() throws SQLException,
ClassNotFoundException {

try {

revert_test_state("com/ibm/imte/db2/sample/deepnested/ddl/schema_object
s.drop.ddl.sql");

} catch (IOException e) {
logInfo("Drop sql exception:" + e.getMessage());

}
}

}

424 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Appendix F. Additional material

This appendix refers to more material that can be downloaded from the Internet
as described in the following sections.

Code disclaimer

IBM does not warrant or represent that the code provided is complete or
up-to-date. IBM does not warrant, represent or imply reliability, serviceability, or
function of the code. IBM is under no obligation to update content nor provide
further support.

All code is provided “as is,” with no warranties or guarantees whatsoever. IBM
expressly disclaims to the fullest extent permitted by law all express, implied,
statutory, and other warranties, guarantees, or representations, including, without
limitation, the warranties of merchantability, fitness for a particular purpose, and
non-infringement of proprietary and intellectual property rights. You understand
and agree that you use these materials, information, products, software,
programs, and services, at your own discretion and risk and that you will be
solely responsible for any damages that may result, including loss of data or
damage to your computer system.

F

© Copyright IBM Corp. 2009, 2013. All rights reserved. 425

In no event will IBM be liable to any party for any direct, indirect, incidental,
special, exemplary, or consequential damages of any type whatsoever related to
or arising from use of the code found herein, without limitation, any lost profits,
business interruption, lost savings, loss of programs, or other data, even if IBM is
expressly advised of the possibility of such damages. This exclusion and waiver
of liability applies to all causes of action, whether based on contract, warranty,
tort, or any other legal theories.

Locating the web material

The web material that is associated with this book is available in softcopy on the
Internet from the IBM Redbooks web server. Point your web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247736

Alternatively, you can go to the IBM Redbooks website at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247736.

Using the web material

The additional web material that accompanies this book includes the
following files:

File name Description
sg247636testcase.zipCompressed test code samples for enablement practice.

The compressed file includes the Oracle_testcase
and DB2_testcase files.

System requirements for downloading the web material

The web material requires the following system configuration:

Hard disk space: 0.5 MB minimum
Operating System: Windows 2000/Linux SUSE or Red Hat
Processor: Intel 386 or higher
Memory: 16 MB
426 Oracle to DB2 Conversion Guide: Compatibility Made Easy

ftp://www.redbooks.ibm.com/redbooks/SG247736
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the
web material compressed file into this folder.
 Appendix F. Additional material 427

428 Oracle to DB2 Conversion Guide: Compatibility Made Easy

Related publications

The publications that are listed in this section are considered suitable for a more
detailed discussion of the topics that are covered in this book.

IBM Redbooks publications

The following IBM Redbooks publication provides more information about the
topics in this book:

� Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows, SG24-7048

You can search for, view, download, or order this book and other Redbooks,
Redpapers, Web Docs, draft and more materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

� Administrative API Reference, SC27-2435

� Administrative Routines and Views, SC27-2436

� Call Level Interface Guide and Reference, Volume 1, SC27-2437
© Copyright IBM Corp. 2009, 2013. All rights reserved. 429

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

� Call Level Interface Guide and Reference, Volume 2, SC27-2438

� Command Reference, SC27-2439

� Data Movement Utilities Guide and Reference, SC27-2440

� Data Recovery and High Availability Guide and Reference, SC27-2441

� Database Administration Concepts and Configuration Reference, SC27-2442

� Database Monitoring Guide and Reference, SC27-2458

� Database Security Guide, SC27-2443

� DB2 Connect User's Guide, SC27-2434

� DB2 Text Search Guide, SC27-2459

� Developing ADO.NET and OLE DB Applications, SC27-2444

� Developing Embedded SQL Applications, SC27-2445

� Developing Java Applications, SC27-2446

� Developing Perl, PHP, Python, and Ruby on Rails Applications, SC27-2447

� Developing User-defined Routines (SQL and External), SC27-2448

� Getting Started with Database Application Development, GI11-9410

� Getting Started with DB2 Installation and Administration on Linux and
Windows, GI11-9411

� Globalization Guide, SC27-2449

� Information Integration: Administration Guide for Federated Systems,
SC19-1020

� Information Integration: ASNCLP Program Reference for Replication and
Event Publishing, SC19-1018

� Information Integration: Configuration Guide for Federated Data Sources,
SC19-1034

� Information Integration: Introduction to Replication and Event Publishing,
SC19-1028

� Information Integration: SQL Replication Guide and Reference, SC19-1030

� Installing and Configuring DB2 Connect Personal Edition, SC27-2432

� Installing and Configuring DB2 Connect Servers, SC27-2433

� Installing DB2 Servers, GC27-2455

� Installing IBM Data Server Clients, GC27-2454

� Message Reference Volume 1, SC27-2450

� Message Reference Volume 2, SC27-2451
430 Oracle to DB2 Conversion Guide: Compatibility Made Easy

� Net Search Extender Administration and User's Guide, SC27-2469

� SQL Procedural Languages: Application Enablement and Support,
SC23-9838

� Partitioning and Clustering Guide, SC27-2453

� pureXML Guide, SC27-2465

� Query Patroller Administration and User's Guide, SC27-2467

� Spatial Extender and Geodetic Data Management Feature User's Guide and
Reference, SC27-2468

� SQL Procedural Language Guide, SC27-2470

� SQL Reference, Volume 1, SC27-2456

� SQL Reference, Volume 2, SC27-2457

� Troubleshooting and Tuning Database Performance, SC27-2461

� Upgrading to DB2 Version 9.7, SC27-2452

� Visual Explain Tutorial, SC27-2462

� What's New for DB2 Version 9.7, SC27-2463

� Workload Manager Guide and Reference, SC27-2464

� XQuery Reference, SC27-2466

Online resources

These websites are also relevant as further information sources:

DB2
� Database and Information Management home page

http://www.ibm.com/software/data/

� DB2 Application Development

http://www.ibm.com/software/data/db2/ad/

� DB2 developerWorks

http://www.ibm.com/developerworks/db2/

� DB2 Information Center

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp

� DB2 for Linux

http://www.ibm.com/software/data/db2/linux/
 Related publications 431

http://www.ibm.com/software/data/
http://www.ibm.com/developerworks/db2/
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp
http://www.ibm.com/software/data/db2/linux/
http://www.ibm.com/software/data/db2/ad/

� DB2 Product Family Library

http://www.ibm.com/software/data/db2/library/

� DB2 Technical Support

http://www-947.ibm.com/support/entry/portal/Overview/Software/Inform
ation_Management/DB2_for_Linux,_UNIX_and_Windows

� Planet DB2

http://www.planetdb2.com/

Other resources
� Apache HTTP Server Project

http://httpd.apache.org

� Comprehensive Perl Archive Network

– http://www.cpan.org
– http://www.cpan.org/modules/by-category/07_Database_Interfaces/DBI

� DB2 Perl Database Interface

http://www.ibm.com/software/data/db2/perl

� DBI.perl.org

http://dbi.perl.org

� IBM Tivoli System Automation for Multiplatforms

http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8272-01/en_US/PD
F/HALBAU01.pdf

� Perl.apache.org

http://perl.apache.org/docs/1.0/guide/

� PHP scripting language

http://www.php.net/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
432 Oracle to DB2 Conversion Guide: Compatibility Made Easy

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://httpd.apache.org
http://www.cpan.org
http://www.ibm.com/software/data/db2/library/
http://www.cpan.org/modules/by-category/07_Database_Interfaces/DBI
http://www.planetdb2.com/
http://www.ibm.com/software/data/db2/perl
http://dbi.perl.org
http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8272-01/en_US/PDF/HALBAU01.pdf
http://perl.apache.org/docs/1.0/guide/
http://www.php.net/
http://www-947.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Oracle to DB2 Conversion Guide: Com
patibility M

ade Easy

®

SG24-7736-02 ISBN 0738438758

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Oracle to DB2 Conversion Guide:
Compatibility Made Easy

Move Oracle to DB2
efficiently and
effectively

Learn about DB2 10.5
Oracle Database
compatibility
features

Use Oracle PL/SQL
skills directly with
DB2 10.5

This IBM Redbooks publication describes IBM DB2 SQL
compatibility features. The latest version of DB2 includes extensive
native support for the PL/SQL procedural language, new data types,
scalar functions, improved concurrency, built-in packages, OCI,
SQL*Plus, and more. These features can help with developing
applications that run on both DB2 and Oracle and can help simplify
the process of moving from Oracle to DB2.

In addition, IBM now provides tools to simplify the enablement
process, such as the highly scalable IBM Data Movement Tool for
moving schema and data into DB2, and an Editor and Profiler for
PL/SQL provided by the IBM Data Studio tool suite.

This Oracle to DB2 migration guide describes new technology,
preferred practices for moving to DB2, and common scenarios that
can help you as you move from Oracle to DB2. This book is intended
for IT architects and developers who are converting from Oracle to
DB2.

DB2 compatibility with Oracle is provided through native support.
The new capabilities in DB2 that provide compatibility are
implemented at the lowest and most intimate levels of the database
kernel, as though they were originally engineered for DB2. Native
support means that the DB2 implementation is done without the aid
of an emulation layer. This intimacy leads to the scalable
implementation that DB2 offers, providing identical performance
between DB2 compatibility features and DB2 other language
elements. For example, DB2 runs SQL PL at the same performance
as PL/SQL implementations of the same function.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Acknowledgements

	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks publications

	Summary of changes
	September 2013, Third Edition

	Chapter 1. Introduction
	1.1 DB2 family of products
	1.1.1 DB2 editions
	1.1.2 IBM DB2 10.5 Advanced Enterprise Edition features
	1.1.3 DB2 10 autonomic computing features
	1.1.4 Introduction to PureData

	1.2 DB2 Oracle database compatibility features overview
	1.2.1 Concurrency control
	1.2.2 Data types
	1.2.3 Implicit casting
	1.2.4 SQL Standard
	1.2.5 PL/SQL
	1.2.6 Built-in packages
	1.2.7 Oracle specific JDBC extensions
	1.2.8 SQL*Plus scripts
	1.2.9 Oracle Call Interface and Pro*C

	1.3 DB2 educational resources
	1.3.1 IBM professional certification
	1.3.2 Other resources
	1.3.3 DB2 10 videos and topics

	Chapter 2. Language compatibility features
	2.1 DB2 compatibility features references
	2.1.1 SQL compatibility setup
	2.1.2 PL/SQL record and collection types
	2.1.3 Subtypes
	2.1.4 Basic procedural statements
	2.1.5 Control of flow statements
	2.1.6 Condition (exceptions) handling
	2.1.7 Cursor data type
	2.1.8 Static and dynamic SQL support
	2.1.9 Support for built-in scalar functions
	2.1.10 Routines, procedures, and functions compatibility
	2.1.11 PL/SQL packages
	2.1.12 Triggers
	2.1.13 SQL statements

	2.2 Schema compatibility features
	2.2.1 Extended data type support
	2.2.2 Flexible schema changes in DB2
	2.2.3 Sequences
	2.2.4 Index enablement
	2.2.5 Constraints enablement
	2.2.6 Created global temporary tables
	2.2.7 Synonyms
	2.2.8 Views and Materialized Views
	2.2.9 Object types
	2.2.10 Partitioning and MDC
	2.2.11 Oracle database links
	2.2.12 Oracle Data Dictionary compatible views

	2.3 DB2 command-line utilities
	2.3.1 The command line processor plus user interface
	2.3.2 Using the DB2 command line processor

	Chapter 3. Conversion process and enablement tools
	3.1 The conversion process
	3.2 Enablement tools
	3.2.1 IBM Data Studio
	3.2.2 IBM Database Conversion Workbench

	3.3 Getting started with DCW
	3.3.1 Creating a DCW project
	3.3.2 DCW Task Launcher

	3.4 DDL extraction using DCW
	3.4.1 DDL extraction using a connection
	3.4.2 DDL extraction using a custom script
	3.4.3 Importing the DDL file

	3.5 Assessment and conversion using DCW
	3.5.1 Evaluating an Oracle DDL
	3.5.2 Converting Oracle DDL to DB2 compatible syntax
	3.5.3 The Split DDL function

	3.6 Preparing your DB2 database for data movement
	3.6.1 Creating the target DB2 database
	3.6.2 Deploying the DDL objects that are required for data movement

	3.7 Data movement using DCW
	3.7.1 Data movement using flat files
	3.7.2 Data movement using pipes
	3.7.3 Data movement using IBM InfoSphere Federation Server
	3.7.4 Data movement using IBM InfoSphere Change Data Capture
	3.7.5 Manual data deployment
	3.7.6 Selecting the appropriate data movement method
	3.7.7 Verifying data movement

	3.8 Deploying remaining objects on the target DB2 database
	3.9 Conclusion

	Chapter 4. Enablement scenario
	4.1 Installing DB2 and creating an instance
	4.2 Enabling SQL compatibility
	4.3 Creating and configuring the target DB2 database
	4.4 Defining a new database user
	4.5 Using IBM Database Conversion Workbench
	4.5.1 Getting started
	4.5.2 Extracting DDL and PL/SQL objects
	4.5.3 Compatibility evaluation
	4.5.4 Conversion
	4.5.5 Splitting DDL
	4.5.6 Deploying objects
	4.5.7 Extracting and loading data from files
	4.5.8 Deploying PL/SQL objects
	4.5.9 Resolving incompatibilities with Interactive Deploy

	4.6 Verifying enablement
	4.7 Summary

	Chapter 5. Application conversion
	5.1 DB2 application development introduction
	5.1.1 Driver support
	5.1.2 Embedded SQL

	5.2 Application enablement planning
	5.2.1 Checking software and hardware availability and compatibility
	5.2.2 Educating developers and administrators
	5.2.3 Analyzing application logic and source code
	5.2.4 Setting up the target environment
	5.2.5 Changing vendor-specific database API use
	5.2.6 Application testing
	5.2.7 Application tuning
	5.2.8 Production rollout procedures
	5.2.9 User education

	5.3 Converting XML features
	5.3.1 SQL/XML
	5.3.2 XQuery
	5.3.3 Modifying XML data

	5.4 Converting Oracle Pro*C applications to DB2
	5.4.1 Connecting to the database
	5.4.2 Host variable declaration
	5.4.3 Exception handling
	5.4.4 Error messages and warnings
	5.4.5 Passing data to a stored procedure from a C program
	5.4.6 Building a C/C++ DB2 application

	5.5 Converting Oracle Java applications to DB2
	5.5.1 Java access methods to DB2
	5.5.2 JDBC driver for DB2
	5.5.3 JDBC driver declaration
	5.5.4 New binary XML API
	5.5.5 Stored procedure calls

	5.6 Converting Oracle Call Interface applications
	5.7 Converting Open Database Connectivity applications
	5.7.1 Introduction to DB2 CLI
	5.7.2 Setting up the DB2 CLI environment

	5.8 Converting Perl applications
	5.8.1 DB2 Connect method syntax
	5.8.2 Syntax for calling a DB2 stored procedures

	5.9 Converting PHP applications
	5.9.1 Connecting to Oracle using PDO
	5.9.2 Connecting to DB2 using PDO
	5.9.3 Connecting to an Oracle database using PHP (OCI8)
	5.9.4 Connecting PHP applications to a DB2 database

	5.10 Converting .NET applications
	5.10.1 Supported development software for .NET Framework applications (DB2 9.7)
	5.10.2 Supported development software for .NET Framework applications (DB2 10.5)
	5.10.3 Supported deployment software for .NET Framework applications (in general)
	5.10.4 .NET Data Providers
	5.10.5 Visual Basic .NET conversion example

	Appendix A. Terminology mapping
	Appendix B. Data types
	B.1 Supported SQL data types in C/C++
	B.2 Supported SQL data types in Java
	B.3 Data types available in PL/SQL
	B.4 Mapping Oracle data types to DB2 data types

	Appendix C. Built-in modules
	C.1 DBMS_ALERT
	C.2 DBMS_DDL
	C.3 DBMS_JOB
	C.4 DBMS_LOB
	C.5 DBMS_OUTPUT
	C.6 DBMS_PIPE
	C.7 DBMS_SQL
	C.8 DBMS_UTILITY
	C.9 UTL_DIR
	C.10 UTL_MAIL
	C.11 UTL_SMTP

	Appendix D. DB2CI sample program
	Appendix E. Code samples
	E.1 Code disclaimer
	E.2 Oracle DDL statements
	E.2.1 Tables and views
	E.2.2 Packages, procedures, and functions
	E.2.3 Triggers and anonymous blocks

	E.3 DB2 DDL statements
	E.3.1 Tables and views
	E.3.2 PL/SQL packages, procedures, and functions
	E.3.3 Triggers

	E.4 Deep nested objects sample
	E.4.1 Creating a database
	E.4.2 Creating schema objects (default schema)
	E.4.3 JUnit tests (class file excerpt that includes only relevant information for the printed book)
	E.4.4 Cleaning up

	Appendix F. Additional material
	Code disclaimer
	Locating the web material
	Using the web material
	System requirements for downloading the web material
	Downloading and extracting the web material

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	Help from IBM

	Back cover

